Citation: CHEN Hui, CHEN Dan, XIE Wei-Miao, ZHENG Xiang, LI Guo-Hua. Preparation and Electrocatalytic Activity of Tungsten Carbide and Tungsten-Iron Carbide Composite with Core-Shell Structure[J]. Acta Physico-Chimica Sinica, ;2014, 30(5): 891-898. doi: 10.3866/PKU.WHXB201402241 shu

Preparation and Electrocatalytic Activity of Tungsten Carbide and Tungsten-Iron Carbide Composite with Core-Shell Structure

  • Received Date: 7 November 2013
    Available Online: 24 February 2014

    Fund Project:

  • A tungsten carbide and tungsten-iron carbide composite with a core-shell structure was prepared through a combination of surface coating and in situ reduction-carbonization, using ammonium metatungstate as the tungsten source and iron hydroxide as the iron source. The main crystal phases of the composite were tungsten-iron carbide (Fe3W3C), monotungsten carbide (WC), and bitungsten carbide (W2C). In the core-shell composite, Fe3W3C formed the core, and the shell consisted of WC and W2C. The electrocatalytic activity for methanol oxidation of the composite was measured by cyclic voltammetry with a three-electrode system in acidic, neutral, and alkaline aqueous solutions. The results show that the electrocatalytic activity of the composite is higher than those of tungsten carbide particles and mesoporous hollow microspheres. The activity is affected by the properties of the solution in which the reaction is performed, and is related to the crystal phase and microstructure of the composite. These results indicate that the electrocatalytic activity of tungsten carbide can be adjusted by changing the properties of the reaction solution and controlled by adjusting the crystal phase and microstructure of the composite. Furthermore, the activity can be improved through formation of a core-shell structure; this is an efficient way to improve the electrocatalytic activity of tungsten carbide.

  • 加载中
    1. [1]

      (1) Levy, R. B.; Stauffer, M. C. Science 1973, 181, 547. doi: 10.1126/science.181.4099.547

    2. [2]

      (2) Böhm, H. Nature 1970, 227, 484.

    3. [3]

      (3) Wang, G. J.; Liu, R. Z.; Chang, J. S. J. Qingdao Univ. 2001, 16 (3), 51 [王广建, 柳荣展, 常俊石. 青岛大学学报, 2001, 16 (3), 51.]

    4. [4]

      (4) Zhu, L. Z.; Chen, Y. F.; Zhang, Q. Y. Chin. J. Appl. Chem. 1999, 16 (4), 52. [朱龙章, 陈宇飞, 张庆元. 应用化学, 1999, 16 (4), 52.]

    5. [5]

      (5) Ma, C. A.; Yang, Z.W.; Zhou, Y. H.; Zha, Q. X. Acta Phys. -Chim. Sin. 1990, 6 (5), 622. [马淳安, 杨祖望, 周运鸿, 查全性. 物理化学学报, 1990, 6 (5), 622.] doi: 10.3866/PKU.WHXB19900521

    6. [6]

      (6) Palanker, V. S.; Gajyev, R. A.; Sokolsky, D. V. Electrochim. Acta 1977, 22, 133.

    7. [7]

      (7) Zellner, M. B.; Chen, J. G. Catal. Today 2005, 99, 299. doi: 10.1016/j.cattod.2004.10.004

    8. [8]

      (8) McIntyre, D. R.; Burstein, G. T.; Vossen, A. J. Power Sources 2002, 107, 67. doi: 10.1016/S0378-7753(01)00987-9

    9. [9]

      (9) Günter, S. E.; Detlef, B.; Walter, S. J. Catal. 1976, 43, 353. doi: 10.1016/0021-9517(76)90321-3

    10. [10]

      (10) Chen, Z. Y.; Shi, M. Q.; Ma, C. A.; Chu, Y. Q.; Zhu, A. J. Power Technology 2013, 235, 467. doi: 10.1016/j.powtec.2012.10.013

    11. [11]

      (11) Bosco, J. P.; Sasaki, K.; Sadakane, M.; Ueda, W.; Chen, J. G. Chem. Mater. 2010, 22, 966. doi: 10.1021/cm901855y

    12. [12]

      (12) Cui, X. Z.; Zhou, X. X.; Chen, H. R.; Hua, Z. L.; Wu, H. X.; He, Q. J.; Zhang, L. X.; Shi, J. L. International Journal of Hydrogen Energy 2011, 36, 10513. doi: 10.1016/j.ijhydene.2011.06.050

    13. [13]

      (13) Yan, Y.; Zhang, L.; Qi, X.; Song, H.; Wang, J. Y.; Zhang, H.; Wang, X. Small 2012, 21, 3350.

    14. [14]

      (14) Giordano, C.; Antonietti, M. Nano Today 2011, 6, 366. doi: 10.1016/j.nantod.2011.06.002

    15. [15]

      (15) Shen, P. K.; Yin, S. B.; Li, Z. H.; Chen, C. Electrochim. Acta 2010, 55, 7969. doi: 10.1016/j.electacta.2010.03.025

    16. [16]

      (16) Kumar, A.; Singh, K.; Pandy, O. P. Journal of Refractory Metals and Hard Materials 2011, 29, 555. doi: 10.1016/j.ijrmhm.2011.01.009

    17. [17]

      (17) Reddy, K. M.; Rao, T. N.; Radha, K.; Joardar, J. Journal of Alloys and Compounds 2010, 494, 404. doi: 10.1016/j.jallcom.2010.01.059

    18. [18]

      (18) Zhou, X. S.; Qiu, Y. J.; Yin, J.; Gao, S. International Journal of Hydrogen Energy 2011, 36, 7398. doi: 10.1016/j.ijhydene.2011.03.081

    19. [19]

      (19) Rahsepar, M.; Pakshir, M.; Nikolaev, P.; Safavi, A.; Palanisamy, K.; Kim, H. Applied Catalysis B: Environmental 2012, 127, 265. doi: 10.1016/j.apcatb.2012.08.032

    20. [20]

      (20) Li, G. H.; Tian, W.; Tang, J. Y.; Ma, C. A. Acta Phys. -Chim. Sin. 2007, 23 (9), 1370. [李国华, 田伟, 汤俊艳, 马淳安. 物理化学学报, 2007, 23 (9), 1370.] doi: 10.3866/PKU.WHXB20070912

    21. [21]

      (21) Yao, G. X.; Shi, B. B.; Li, G. H.; Zheng, Y. F. Acta Phys. -Chim. Sin. 2010, 26 (5), 1317. [姚国新, 施斌斌, 李国华, 郑遗凡. 物理化学学报, 2010, 26 (5), 1317.] doi: 10.3866/PKU.WHXB20100337

    22. [22]

      (22) Tauster, S. J.; Fung, S. C.; Garten, R. L. J. Am. Chem. Soc. 1978, 100, 170. doi: 10.1021/ja00469a029

    23. [23]

      (23) Hu, X. C.; Chen, D.; Shi, B. B.; Li, G. H. Acta Phys. -Chim. Sin. 2011, 27 (12), 2863. [胡仙超, 陈丹, 施斌斌, 李国华. 物理化学学报, 2011, 27 (12), 2863.] doi: 10.3866/PKU.WHXB20112863

    24. [24]

      (24) Li, G. H.; Chen, D.; Zheng, X.; Xie, W. M.; Chen, Y. Acta Phys. -Chim.Sin. 2012, 28 (9), 2077. [李国华, 陈丹, 郑翔, 谢伟淼, 程媛. 物理化学学报, 2012, 28 (9), 2077.] doi: 10.3866/PKU.WHXB201206042

    25. [25]

      (25) Okamoto, H.; Kawamura, G.; Ishikawa, A.; Kudo, T. J. Electrochem. Soc. 1987, 134, 1653. doi: 10.1149/1.2100730

    26. [26]

      (26) Zhong, C. J.; Mathew, M. M. Adv. Mater. 2001, 13, 1507. doi: 10.1002/1521-4095(200110)13:19< > 1.0.CO; 2-S

    27. [27]

      (27) Cachet-Vivier, C.; Vivier, V.; Cha, C. S.; Nedlec, J. Y.; Yu, L. T. Electrochim. Acta 2001, 47, 181. doi: 10.1016/S0013-4686(01)00549-7

    28. [28]

      (28) Frelink, T.; Visscher, W.; van Veen, J. A. R. J. Electroanal. Chem. 1995, 382, 65. doi: 10.1016/0022-0728(94)03648-M


  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    5. [5]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    6. [6]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    7. [7]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    10. [10]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    11. [11]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    12. [12]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    15. [15]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    18. [18]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    19. [19]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    20. [20]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

Metrics
  • PDF Downloads(818)
  • Abstract views(718)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return