Citation: TANG Wei, WANG Jing, YAO Peng-Jun, DU Hai-Ying, SUN Yan-Hui. Preparation, Characterization and Gas Sensing Mechanism of ZnO-Doped SnO2 Nanofibers[J]. Acta Physico-Chimica Sinica, ;2014, 30(4): 781-788. doi: 10.3866/PKU.WHXB201402191 shu

Preparation, Characterization and Gas Sensing Mechanism of ZnO-Doped SnO2 Nanofibers

  • Received Date: 13 January 2014
    Available Online: 19 February 2014

    Fund Project:

  • SnO2 nanofibers were fabricated by electrospinning, using SnCl2 ·2H2O as the raw material. The influences of ZnO doping on the morphologies, structures, and compositions of the SnO2 nanofibers were studied by introducing different amounts of ZnO into the SnO2. The crystallography and microstructures of the synthesized SnO2/ZnO composite nanofibers with different molar ratios of Sn to Zn were investigated using thermogravimetric/differential thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy. The obtained SnO2/ZnO composite nanofibers with different ZnO contents had hollow hierarchical structures composed of nanocrystals. Different amounts of ZnO gave different structures. The characterization results showed that the introduction of ZnO into SnO2 played an important role in the SnO2 nanofiber structure. The gas sensing properties of sensors based on different ZnO-doped SnO2 nanofibers were tested. The results indicated that the methanol-sensing performance of the sensor containing SnO2/ZnO in a molar ratio of 1:1 was better than those of the others. The sensing mechanisms of ZnO-doped SnO2 nanofibers were examined in detail. Possible reasons for the enhanced SnO2 nanofibers were fabricated by electrospinning, using SnCl2 ?2H2O as the raw material. The influences of ZnO doping on the morphologies, structures, and compositions of the SnO2 nanofibers were studied by introducing different amounts of ZnO into the SnO2. The crystallography and microstructures of the synthesized SnO2/ZnO composite nanofibers with different molar ratios of Sn to Zn were investigated using thermogravimetric/differential thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy. The obtained SnO2/ZnO composite nanofibers with different ZnO contents had hollow hierarchical structures composed of nanocrystals. Different amounts of ZnO gave different structures. The characterization results showed that the introduction of ZnO into SnO2 played an important role in the SnO2 nanofiber structure. The gas sensing properties of sensors based on different ZnO-doped SnO2 nanofibers were tested. The results indicated that the methanol-sensing performance of the sensor containing SnO2/ZnO in a molar ratio of 1:1 was better than those of the others. The sensing mechanisms of ZnO-doped SnO2 nanofibers were examined in detail. Possible reasons for the enhanced

  • 加载中
    1. [1]

      (1) Wang, J.; Han, Y.; Feng, M.; Chen, J.; Li, X.; Zhang, S. J. Mater. Sci. 2011, 46, 416. doi: 10.1007/s10853-010-4863-z

    2. [2]

      (2) Zhang, K.; Davis, M.; Qiu, J.; Hope-Weeks, L.;Wang, S. Nanotechnology 2012, 23, 385701. doi: 10.1088/0957-4484/23/38/385701

    3. [3]

      (3) Yao, J.; Yan, H.; Lieber, C. M. Nat. Nanotechnol. 2013, 8, 329. doi: 10.1038/nnano.2013.55

    4. [4]

      (4) Wan, Q.; Li, Q.; Chen, Y.;Wang, T.; He, X.; Li, J.; Lin, C. Appl. Phys. Lett. 2004, 84, 3654. doi: 10.1063/1.1738932

    5. [5]

      (5) Le, D. T. T.; Van Duy, N.; Tan, H. M.; Trung, N. N.; Van, P. T. H.; Hoa, N. D.; Van Hieu, N. J. Mater. Sci. 2013, 48, 7253. doi: 10.1007/s10853-013-7545-9

    6. [6]

      (6) Sankir, N. D.; Dogan, B. J. Mater. Sci. 2010, 45, 6424. doi: 10.1007/s10853-010-4727-6

    7. [7]

      (7) Comini, E.; Faglia, G.; Sberveglieri, G.; Calestani, D.; Zanotti, L.; Zha, M. Sens. Actuator B-Chem. 2005, 111, 2.

    8. [8]

      (8) Banerjee, N.; Bhowmik, B.; Roy, S.; Sarkar, C. K.; Bhattacharyya, P. J. Nanosci. Nanotechnol. 2013, 13, 6826. doi: 10.1166/jnn.2013.7786

    9. [9]

      (9) Ho, P. Y.; Thiyagu, S.; Kao, S. H.; Kao, C. Y.; Lin, C. F. Nanoscale 2014, 6, 466. doi: 10.1039/c3nr04418a

    10. [10]

      (10) Kim, M. S.; Lee, S. H.; Yoon, H.; Jung, J. H.; Leem, J. Y. J. Nanosci. Nanotechnol. 2013, 13, 6236. doi: 10.1166/jnn.2013.7688

    11. [11]

      (11) Zeng, J.; Zhao, C.; Chong, F.; Cao, Y.; Subhan, F.;Wang, Q.; Yu, J.; Zhang, M.; Luo, L.; Ren,W.; Chen, X.; Yan, Z. J. Chromatogr. A 2013, 1319, 21. doi: 10.1016/j.c hroma.2013.10.040

    12. [12]

      (12) Xia, Y.; Yang, P.; Sun, Y.;Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353. doi: 10.1002/adma.200390087

    13. [13]

      (13) Chen, P. P.;Wang, J.; Yao, P. J.; Du, H. Y.; Li, X. G. Acta Phys. -Chim. Sin. 2012, 28, 1. [陈鹏鹏, 王兢, 姚朋军, 杜海英, 李晓干. 物理化学学报, 2012, 28, 1.] doi: 10.3866/PKU.W HXB2012281

    14. [14]

      (14) Du, J.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. J. Funct. Mater. 2005, 36, 1603. [杜娟, 李越湘, 彭绍琴, 吕功煊, 李树本. 功能材料, 2005, 36, 1603.]

    15. [15]

      (15) Lee, D. J.; Lee, H.; Ryou, M. H.; Han, G. B.; Lee, J. N.; Song, J.; Choi, J.; Cho, K. Y.; Lee, Y. M.; Park, J. K. ACS Appl. Mater. Interfaces 2013, 5, 12005. doi: 10.1021/am403798a

    16. [16]

      (16) Li, X. Y.; Li, Y. C.; Yu, D. G.; Liao, Y. Z.;Wang, X. Int. J. Mol. Sci. 2013, 14, 21647. doi: 10.3390/ijms141121647

    17. [17]

      (17) Yu, D. G.; Li, X. Y.; Chian,W.; Li, Y.;Wang, X. Biomed. Mater. Eng. 2014, 24, 695.

    18. [18]

      (18) Xu, L.;Wang, L.; Si, N.; He, J. J. Control. Release 2013, 172,e131.

    19. [19]

      (19) Ding, B.;Wang, M.; Yu, J.; Sun, G. Sensors 2009, 9, 1609. doi: 10.3390/s90301609

    20. [20]

      (20) Wang, Z.; Li, Z.; Jiang, T.; Xu, X.;Wang, C. ACS Appl. Mater. Interfaces 2013, 5, 2013. doi: 10.1021/am3028553

    21. [21]

      (21) Guan, H.; Shao, C.; Chen, B.; ng, J.; Yang, X. Inorg. Chem. Commun. 2003, 6, 1409. doi: 10.1016/j.inoche.2003.08.021

    22. [22]

      (22) Yang, X.; Shao, C.; Guan, H.; Li, X.; ng, J. Inorg. Chem. Commun. 2004, 7, 176. doi: 10.1016/j.inoche.2003.10.035

    23. [23]

      (23) Onozuka, K.; Ding, B.; Tsuge, Y.; Naka, T.; Yamazaki, M.; Sugi, S.; Ohno, S.; Yoshikawa, M.; Shiratori, S. Nanotechnology 2006, 17, 1026. doi: 10.1088/0957-4484/17/4/030

    24. [24]

      (24) Wang, Y.; Ramos, I.; Santia -Aviles, J. J. IEEE Sens. 2007, 7, 1347. doi: 10.1109/JSEN.2007.905045

    25. [25]

      (25) Chen, P. P.;Wang, J.; Zhang, C. L.; Hao, Y.W.; Du, H. Y. Acta. Phys. -Chim. Sin. 2013, 29, 1827. [陈鹏鹏, 王兢, 张春丽,郝育闻, 杜海英. 物理化学学报, 2013, 29, 1827.] doi: 10.3866/P KU.WHXB201306091

    26. [26]

      (26) Zhang, Y.; He, X.; Li, J.; Miao, Z.; Huang, F. Sens. Actuator BChem. 2008, 132, 67. doi: 10.1016/j.snb.2008.01.006

    27. [27]

      (27) Choi, Y. J.; Hwang, I. S.; Park, J. G.; Choi, K. J.; Park, J. H.; Lee, J. H. Nanotechnology 2008, 19, 095508. doi: 10.1088/0957-4484/19/9/095508

    28. [28]

      (28) Zheng, Y.;Wang, J.; Yao, P. Sens. Actuators B 2011, 156, doi: 10.1016/j.snb.2011.02.026

    29. [29]

      (29) Park, J. A.; Moon, J.; Lee, S. J.; Lim, S. C.; Zyung, T. Curr. Appl. Phys. 2009, 9, S210.

    30. [30]

      (30) Wei, S.; Yu, Y.; Zhou, M. Mater. Lett. 2010, 64, 2284. doi: 10.1016/j.matlet.2010.07.038

    31. [31]

      (31) Lee, C.; Choi, S.W.; Park, J. Y.; Kim, S. S. Sensor. Lett. 2011, 9, 132. doi: 10.1166/sl.2011.1435

    32. [32]

      (32) Zhang, Z.; Li, X.;Wang, C.;Wei, L.; Liu, Y.; Shao, C. J. Phys. Chem. C 2009, 113, 19397. doi: 10.1021/jp9070373

    33. [33]

      (33) Zhao, M.;Wang, X.; Ning, L.; Jia, J.; Li, X.; Cao, L. Sens. Actuator B-Chem. 2011, 156, 588. doi: 10.1016/j.snb.2011.01.070

    34. [34]

      (34) Song, X.;Wang, Z.; Liu, Y.;Wang, C.; Li, L. Nanotechnology 2009, 20, 075501. doi: 10.1088/0957-4484/20/7/075501

    35. [35]

      (35) Choi, S.W.; Park, J. Y.; Kim, S. S. Nanotechnology 2009, 20, 465603. doi: 10.1088/0957-4484/20/46/465603

    36. [36]

      (36) Moon, J.; Park, J. A.; Lee, S. J.; Zyung, T. ETRI J. 2009, 31, 636. doi: 10.4218/etrij.09.1209.0004

    37. [37]

      (37) Zhang, Z.; Shao, C.; Li, X.; Zhang, L.; Xue, H.;Wang, C.; Liu, Y. J. Phys. Chem. C 2010, 114, 7920. doi: 10.1021/jp100262q

    38. [38]

      (38) Du, H. Y.;Wang, J.; Yao, P. J.; Hao, Y.W.; Li, X. G. J. Mater. Sci. 2013, 48, 3597. doi: 10.1007/s10853-013-7157-4

    39. [39]

      (39) Shao, C.; Yang, X.; Guan, H.; Liu, Y.; ng, J. Inorg. Chem. Commun. 2004, 7, 625. doi: 10.1016/j.inoche.2004.03.006

    40. [40]

      (40) Abdelrazek, E.; Elashmawi, I.; Labeeb, S. Physica B 2010, 405, 2021. doi: 10.1016/j.physb.2010.01.095

    41. [41]

      (41) Loría-Bastarrachea, M.; Herrera-Kao,W.; Cauich-Rodríguez, J.; Cervantes-Uc, J.; Vázquez-Torres, H.; ávila-Ortega, A. J. Therm. Anal. Calorim. 2011, 104, 737. doi: 10.1007/s10973-010-1061-9

    42. [42]

      (42) Siddheswaran, R.; Sankar, R.; Babu, M. R.; Rathnakumari, M.; Jayavel, R.; Murugakoothan, P.; Sureshkumar, P. Cryst. Res. Technol. 2006, 41, 446.

    43. [43]

      (43) Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430. doi: 10.1021/ja0299452

    44. [44]

      (44) Calatayud, M.; Markovits, A.; Menetrey, M.; Mguig, B.; Minot, C. Catal. Today 2003, 85, 125. doi: 10.1016/S0920-5861(03)00381-X

    45. [45]

      (45) Hou, C. P.; Li, Y. H.; Ge, X. T.; Fang, D. R.; Shen, L.; Liu, X. Q. Electronic Components and Materials 2004, 23, 17. [侯长平, 李永红, 葛秀涛, 方大儒, 沈玲, 刘杏芹. 电子元件与材料,< B>2004, 23, 17.]

    46. [46]

      (46) Zheng,W.; Lu, X.;Wang,W.; Li, Z.; Zhang, H.;Wang, Y.; Wang, Z.;Wang, C. Sens. Actuator B-Chem. 2009, 142, 61. doi: 10.1016/j.snb.2009.07.031

    47. [47]

      (47) Zheng, L.; Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J. Inorg. Chem. 2009, 48, 1819. doi: 10.1021/ic802293p

    48. [48]

      (48) Wang, C.; Shao, C.; Zhang, X.; Liu, Y. Inorg. Chem. 2009, 48,7261. doi: 10.1021/ic9005983i, L.; Liu, Y.; Shao, C. J. Phys. Chem. C 2009, 113, 19397. doi: 10.1021/jp9070373

    49. [49]

      (33) Zhao, M.; Wang, X.; Ning, L.; Jia, J.; Li, X.; Cao, L. Sens. Actuator B-Chem. 2011, 156, 588. doi: 10.1016/j.snb.2011.01.070

    50. [50]

      (34) Song, X.; Wang, Z.; Liu, Y.; Wang, C.; Li, L. Nanotechnology 2009, 20, 075501. doi: 10.1088/0957-4484/20/7/075501

    51. [51]

      (35) Choi, S. W.; Park, J. Y.; Kim, S. S. Nanotechnology 2009, 20, 465603. doi: 10.1088/0957-4484/20/46/465603

    52. [52]

      (36) Moon, J.; Park, J. A.; Lee, S. J.; Zyung, T. ETRI J. 2009, 31, 636. doi: 10.4218/etrij.09.1209.0004

    53. [53]

      (37) Zhang, Z.; Shao, C.; Li, X.; Zhang, L.; Xue, H.; Wang, C.; Liu, Y. J. Phys. Chem. C 2010, 114, 7920. doi: 10.1021/jp100262q

    54. [54]

      (38) Du, H. Y.; Wang, J.; Yao, P. J.; Hao, Y. W.; Li, X. G. J. Mater. Sci. 2013, 48, 3597. doi: 10.1007/s10853-013-7157-4

    55. [55]

      (39) Shao, C.; Yang, X.; Guan, H.; Liu, Y.; ng, J. Inorg. Chem. Commun. 2004, 7, 625. doi: 10.1016/j.inoche.2004.03.006

    56. [56]

      (40) Abdelrazek, E.; Elashmawi, I.; Labeeb, S. Physica B 2010, 405, 2021. doi: 10.1016/j.physb.2010.01.095

    57. [57]

      (41) Loría-Bastarrachea, M.; Herrera-Kao, W.; Cauich-Rodríguez, J.; Cervantes-Uc, J.; Vázquez-Torres, H.; ávila-Ortega, A. J. Therm. Anal. Calorim. 2011, 104, 737. doi: 10.1007/s10973-010-1061-9

    58. [58]

      (42) Siddheswaran, R.; Sankar, R.; Ramesh Babu, M.; Rathnakumari, M.; Jayavel, R.; Murugakoothan, P.; Sureshkumar, P. Cryst. Res. Technol. 2006, 41, 446.

    59. [59]

      (43) Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430. doi: 10.1021/ja0299452

    60. [60]

      (44) Calatayud, M.; Markovits, A.; Menetrey, M.; Mguig, B.; Minot, C. Catal. Today 2003, 85, 125. doi: 10.1016/S0920-5861(03)00381-X

    61. [61]

      (45) Hou, C. P.; Li, Y. H.; Ge, X. T.; Fang, D. R.; Shen, L.; Liu, X. Q. E. C. & M. 2004, 23, 17. [侯长平, 李永红, 葛秀涛, 方大儒, 沈玲, 刘杏芹. 电子元件与材料, 2004, 23, 17.]

    62. [62]

      (46) Zheng, W.; Lu, X.; Wang, W.; Li, Z.; Zhang, H.; Wang, Y.; Wang, Z.; Wang, C. Sens. Actuator B-Chem. 2009, 142, 61. doi: 10.1016/j.snb.2009.07.031

    63. [63]

      (47) Zheng, L.; Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J. Inorg. Chem. 2009, 48, 1819. doi: 10.1021/ic802293p

    64. [64]

      (48) Wang, C.; Shao, C.; Zhang, X.; Liu, Y. Inorg. Chem. 2009, 48, 7261. doi: 10.1021/ic9005983

       


  • 加载中
    1. [1]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    2. [2]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    3. [3]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    6. [6]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    7. [7]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    8. [8]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    9. [9]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    13. [13]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    14. [14]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    15. [15]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    17. [17]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    18. [18]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    19. [19]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(629)
  • Abstract views(852)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return