Citation: ZHAO Yue, WANG Li, ZHANG Jia-Liang, GUO Hong-Chen. Influence of Non-Thermal Plasma Discharge Mode and Reactor Structure on Ammonia Decomposition to Hydrogen[J]. Acta Physico-Chimica Sinica, ;2014, 30(4): 738-744. doi: 10.3866/PKU.WHXB201402141
-
At ambient pressure, the effect of plasma discharge mode and reactor structure on ammonia decomposition to hydrogen was investigated. Dielectric barrier discharge (DBD) and alternating current (AC) arc discharge were produced upon adjusting the structure of the plasma reactor. By studying the discharge images, the voltage-current waveforms and the optical emission spectra in two discharge modes, we found that the AC arc discharge was a spatially partially stronger discharge compared with DBD. The AC arc discharge had a higher power efficiency and higher electron density than the dielectric barrier discharge. The ammonia molecules were mainly transformed into NH3* in an electronic excited state, and the N―H bond ruptured upon collision with a high-energy electron in DBD. However, electrons with a high average electron energy upon AC arc discharge can rupture the N―H bond directly to form highly active NH2 and NH species, which can enhance the ammonia decomposition reaction. Results show that AC arc discharge had better performance toward ammonia decomposition than dielectric barrier discharge. The ability of different reactor structures to decompose ammonia under AC arc discharge increased in the following order: tube-tube>tube-flat>point-flat>flat-flat. The ammonia conversion can be as high as 60% under the tube-tube AC arc discharge with an input power of 30 W and a gap distance of 6 mm, while it was only 4% under the flat-flat dielectric barrier discharge.
-
-
[1]
(1) Barreto, L.; Makihira, A.; Riahi, K. Int. J. Hydrogen Energy 2003, 28, 267. doi: 10.1016/S0360-3199(02)00074-5
-
[2]
(2) Bartels, J. R.; Pate, M. B.; Olson, N. K. Int. J. Hydrogen Energy 2010, 35, 8371. doi: 10.1016/j.ijhydene.2010.04.035
-
[3]
(3) Min, S. X.; Lü, G. X. Acta Phys. -Chim. Sin. 2011, 27, 2178. [敏世雄, 吕功煊. 物理化学学报, 2011, 27, 2178.] doi: 10.3866/PKU.WHXB20110904
-
[4]
(4) Li, L. X.; Hurley, J. A. Int. J. Hydrogen Energy 2007, 32, 6. doi: 10.1016/j.ijhydene.2006.05.014
-
[5]
(5) Schüth, F.; Palkovits, R.; Schlögl, R.; Su, D.S. Energ. Environ. Sci. 2012, 5, 6278. doi: 10.1039/c2ee02865d
-
[6]
(6) Lan, R.; Irvine T.S. J.; Tao, S.W. Int. J. Hydrogen Energy 2012, 37, 1482. doi: 10.1016/j.ijhydene.2011.10.004
-
[7]
(7) Wang, Q.; Yan, B. H.; Jin, Y.; Cheng, Y. Energ. Fuel. 2009, 23, 4196. doi: 10.1021/ef900286j
-
[8]
(8) Pei, M. X.; Lin, H.; Shangguan, W. F.; Huang, Z. Acta Phys. -Chim. Sin. 2005, 21, 255. [裴梅香, 林赫, 上官文峰, 黄震. 物理化学学报, 2005, 21, 255.] doi: 10.3866/PKU.WHXB20050306
-
[9]
(9) Wang, W. H.; Huang, B. C.; Wang, L. S.; Ye, D. Q. Surf. Coat. Tech. 2011, 205, 4896. 10.1016/j.surfcoat.2011.04.100
-
[10]
(10) d'A stino, R.; Cramarossa, F.; Benedictis, S.; Ferraro, G. Plasma Chem. Plasma P. 1981, 1 (1), 19.
-
[11]
(11) Nicholas, J. E.; Spiers, A. I.; Martin, N. A. Plasma Chem. Plasma P. 1986, 6 (1), 39. doi: 10.1007/BF00573820
-
[12]
(12) Fateev, A.; Leipold, F.; Kusano, Y.; Stenum, B.; Tsakadze, E.; Bindslev, H. Plasma Process Polym. 2005, 2, 193.
-
[13]
(13) Arakoni, R. A.; Bhoj, A. N.; Kushner, M. J. J. Phys. D Appl. Phys. 2007, 40, 2476. doi: 10.1088/0022-3727/40/8/010
-
[14]
(14) Qiu, H.; Martus, K.; Lee, W. Y.; Becker, K. Int. J. Mass Spectrom. 2004, 233 (1-3), 19. doi: 10.1016/j.ijms.2003.08.017
-
[15]
(15) Soucy, G.; Jurewicz, J. W.; Boulos, M. I. Plasma Chem. Plasma P. 1995, 15, 693. doi: 10.1007/BF01447067
-
[16]
(16) Wang, L.; Zhao, Y.; Liu, C. Y.; ng, W. M.; Guo, H. C. Chem. Commun. 2013, 49, 3787. doi: 10.1039/c3cc41301b
-
[17]
(17) Zhao, Y.; Wang, L.; Zhang, J. L.; ng, W. M.; Guo, H. C. Catal. Today 2013, 211, 72. doi: 10.1016/j.cattod.2013.03.027
-
[18]
(18) Guo, H. C.; Zhao, Y.; Wang, L.; ng, W. M. One type of plate plasma reactor used for hydrogen production from ammonia decomposition. CN Patent 101 863 455.B, 2012-01-25. [郭洪臣, 赵越, 王丽, 宫为民. 一种用于氨分解制氢的板式等离子体反应器: 中国, CN101 863 455.B[P]. 2012-01-25.] doi: 10.3969/j.issn.1671-0908.2015.05.013
-
[19]
(19) Kogelschatz, U. Plasma Chem. Plasma P. 2003, 23 (1), 1. doi: 10.1023/A:1022470901385
-
[20]
(20) Gattia, D. M.; Antisari, M. V.; Marazzi, R. Nanotechnology 2007, 18, 255604 (7pp). doi: 10.1088/0957-4484/18/25/255604
-
[21]
(21) Li, X. C.; Dong, L. F. Prog. Nat. Sci. 2006, 12, 1521. [李雪辰, 董丽芳. 自然科学进展, 2006, 12, 1521.]
-
[22]
(22) Pons, J.; Moreau, E.; Touchard, G. J. Phys. D Appl. Phys. 2005, 38, 3635. doi: 10.1088/0022-3727/38/19/012
-
[23]
(23) Li, X. S.; Lin, C. K.; Shi, C.; Xu, Y.; Wang, Y. N.; Zhu, A. M. J. Phys. D Appl. Phys. 2008, 41, 175.
-
[24]
(24) Zou, J. J.; Zhang, Y. P.; Liu, C. J. J. Power Sources 2007, 163, 653. doi: 10.1016/j.jpowsour.2006.02.078
-
[25]
(25) Watson, J. K. G.; Majewski, W. A. J. Mol. Spectrosc. 1986, 115 (1), 82. doi: 10.1016/0022-2852(86)90277-8
-
[26]
(26) Yang, W. D.; Wang, P. N.; Liu, Z. P.; Min, L.; Li, F. M. Chinese Phys. 2002, 11, 260. doi: 10.1088/1009-1963/11/3/312
-
[27]
(27) Chen, H. L.; Lee, H. M.; Chen, S. H.; Chao, Y.; Chang, M. B. Appl. Catal. B Environ. 2008, 85 (1-2), 1. doi: 10.1016/j.apcatb.2008.06.021
-
[1]
-
-
[1]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[2]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[3]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[4]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[5]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[6]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[7]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[8]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[9]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[10]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[11]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[12]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[13]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[14]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[15]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[16]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[1]
Metrics
- PDF Downloads(492)
- Abstract views(503)
- HTML views(5)