Citation: CAI Qian, CAI Qiu-Xia, ZHUANG Gui-Lin, ZHONG Xing, WANG Xin-De, LI Xiao-Nian, WANG Jian-Guo. “External Anchoring Sites” for Noble Metal Nanowires on Deprotonated 1,3-Dipolar Cycloaddition Graphene[J]. Acta Physico-Chimica Sinica, ;2014, 30(4): 640-645. doi: 10.3866/PKU.WHXB201402131 shu

“External Anchoring Sites” for Noble Metal Nanowires on Deprotonated 1,3-Dipolar Cycloaddition Graphene

  • Received Date: 20 November 2013
    Available Online: 13 February 2014

    Fund Project:

  • Density functional theory (DFT) calculations were used to study the adsorption of noble metal (Pt) on deprotonated 1,3-dipolar cycloaddition graphene to explore the mechanism of the formation of metal nanowires. The results show that: (1) Pt atoms that adsorb on 1,3-dipolar cycloaddition graphene induce the deprotonation of this 1,3-dipolar cycloaddition graphene and then the configuration changes to a deprotonated 1,3-dipolar cycloaddition graphene; (2) the noble metal anchoring site on the deprotonated 1,3-dipolar cycloaddition graphene is the ortho-carbon of nitrogen in the deprotonated pyridine alkyne, which was further confirmed by the average Bader charge of the ortho-carbon, and the average Bader charge of the ortho-carbon is as high as 1.0e; (3) Ptn nanowire can form between two neighboring deprotonated pyridine alkyne units of deprotonated 1,3-dipolar cycloaddition graphene, and the Ptn (n=3-6) nanowire adsorption configurations are more stable than the corresponding Ptn (n=3-6) cluster adsorption configurations; and (4) the electronic structure analysis of the composite shows that Pt metal adsorption does not essentially change the electronic property of deprotonated 1,3-dipolar cycloaddition graphene. The doped states of the Pt metal result in the Pt6 cluster adsorption composite being metallic while the doped states result in the Pt6 nanowire adsorption composite being semimetallic.

  • 加载中
    1. [1]

      (1) Chan, K. T.; Neaton, J. B.; Cohen, M. L. Phys. Rev. B2008, 77, 235430.  doi: 10.1103/PhysRevB.77.235430

    2. [2]

      (2) Chang, S. W.; Nair, A. K.; Buehler, M. J. J. Phys. -Condens. Mat ter 2012, 24, 245301. doi: 10.1088/0953-8984/24/24/245301

    3. [3]

      (3) Wang, S. Y.; Jiang, S. P.; Wang, X. Electrochim. Acta 2011, 56, 3338. doi: 10.1016/j.electacta.2011.01.016

    4. [4]

      (4) Xu, C.; Wang, X.; Zhu, J. W. J. Phys. Chem. C 2008, 112, 19841. doi: 10.1021/jp807989b

    5. [5]

      (5) Muszynski, R.; Seger, B.; Kamat, P. V. J. Phys. Chem. C 2008, 112, 5263. doi: 10.1021/jp800977b

    6. [6]

      (6) Entani, S.; Sakai, S.; Matsumoto, Y.; Naramoto, H.; Hao, T.; Maeda, Y. J. Phys. Chem. C 2010, 114, 20042. doi: 10.1021/jp106188w

    7. [7]

      (7) Wang, W. L.; Ma, Z. F. Acta Phys. -Chim. Sin. 2012, 28, 2879. [王万丽, 马紫峰. 物理化学学报, 2012, 28, 2879.] doi: 10.3866/PKU.WHXB201209252

    8. [8]

      (8) Palacios, J. J.; Fernandez-Rossier, J.; Brey, L. Phys. Rev. B 2008, 77, 195428. 10.1103/PhysRevB.77.195428

    9. [9]

      (9) Boukhvalov, D. W.; Katsnelson, M. I. Nano Lett. 2008, 8, 4373. doi: 10.1021/nl802234n

    10. [10]

      (10) Cretu, O.; Krasheninnikov, A. V.; Rodriguez-Manzo, J. A.; Sun, L. T.; Nieminen, R. M.; Banhart, F. Phys. Rev. Lett. 2010, 105, 196102. doi: 10.1103/PhysRevLett.105.196102

    11. [11]

      (11) Lahiri, J.; Lin, Y.; Bozkurt, P.; Oleynik, I. I.; Batzill, M. Nat. Nanotechnol. 2010, 5, 326.

    12. [12]

      (12) Lim, D. H.; Negreira, A. S.; Wilcox, J. J. Phys. Chem. C 2011, 115, 8961. doi: 10.1038/nnano.2010.53

    13. [13]

      (13) Srivastava, M. K.; Wang, Y.; Kemper, A. F.; Cheng, H. P. Phys. Rev. B 2012, 85, 165444. doi: 10.1103/PhysRevB.85.165444

    14. [14]

      (14) Dai, X. Q.; Li, Y. H.; Zhao, J. H.; Tang, Y. N. Acta Phys. -Chim. Sin. 2011, 27, 369. [戴宪起, 李艳慧, 赵建华, 唐亚楠. 物理化学学报, 2011, 27, 369.] doi: 10.3866/PKU.WHXB20110224

    15. [15]

      (15) Liu, H. T.; Liu, Y. Q.; Zhu, D. B. J. Mater. Chem. 2011, 21, 3335. doi: 10.1039/c0jm02922j

    16. [16]

      (16) Muhich, C. L.; Westcott, J. Y.; Morris, T. C.; Weimer, A. W.; Musgrave, C. B. J. Phys. Chem. C 2013, 117, 10523.

    17. [17]

      (17) Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Nano Lett. 2009, 9, 1752.

    18. [18]

      (18) Jafri, R. I.; Rajalakshmi, N.; Ramaprabhu, S. J. Mater. Chem. 2010, 20, 7114. doi: 10.1021/nl803279t

    19. [19]

      (19) Wu, X. Q.; Zong, R. L.; Mu, H. J.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2010, 26, 3002. [吴小琴, 宗瑞隆, 牟豪杰, 朱永法. 物理化学学报, 2010, 26, 3002.] doi: 10.3866/PKU.WHXB20101010

    20. [20]

      (20) Xie, P. Y.; Zhuang, G. L.; Lü, Y. A.; Wang, J. G.; Li, X. N. Act a Phys. -Chim. Sin. 2012, 28, 331. [解鹏洋, 庄桂林, 吕永安, 王建国, 李小年. 物理化学学报, 2012, 28, 331.] doi: 10.3866/PKU.WHXB201111021

    21. [21]

      (21) Wehling, T. O.; Novoselov, K. S.; Morozov, S. V.; Vdovin, E. E.; Katsnelson, M. I.; Geim, A. K.; Lichtenstein, A. I. Nano Lett. 2008, 8, 173. doi: 10.1021/nl072364w

    22. [22]

      (22) Boukhvalov, D. W.; Katsnelson, M. I. Phys. Rev. B 2008, 78, 085413. doi: 10.1103/PhysRevB.78.085413

    23. [23]

      (23) Medeiros, P. V. C.; Mascarenhas, A. J. S.; Mota, F. D.; de Castilho, C. M. C. Nanotechnology 2010, 21, 485701. doi: 10.1088/0957-4484/21/48/485701

    24. [24]

      (24) Xu, Y. F.; Liu, Z. B.; Zhang, X. L.; Wang, Y.; Tian, J. G.; Huang, Y.; Ma, Y. F.; Zhang, X. Y.; Chen, Y. S. Adv. Mater. 2009, 21, 1275. doi: 10.1002/adma.v21:12

    25. [25]

      (25) Georgakilas, V.; Bourlinos, A. B.; Zboril, R.; Steriotis, T. A.; Dallas, P.; Stubos, A. K.; Trapalis, C. Chem. Commun. 2010, 46, 1766. doi: 10.1039/b922081j

    26. [26]

      (26) Bosch-Navarro, C.; Coronado, E.; Marti-Gastaldo, C. Carbon 2013, 54, 201. doi: 10.1016/j.carbon.2012.11.027

    27. [27]

      (27) Georgakilas, V.; Kordatos, K.; Prato, M.; Guldi, D. M.; Holzinger, M.; Hirsch, A. J. Am. Chem. Soc. 2002, 124, 760. doi: 10.1021/ja016954m

    28. [28]

      (28) Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105. doi: 10.1021/cr050569o

    29. [29]

      (29) Singh, P.; Campidelli, S.; Giordani, S.; Bonifazi, D.; Bianco, A.; Prato, M. Chem. Soc. Rev. 2009, 38, 2214. doi: 10.1039/b518111a

    30. [30]

      (30) Maggini, M.; Scorrano, G.; Prato, M. J. Am. Chem. Soc. 1993, 115, 9798. doi: 10.1021/ja00074a056

    31. [31]

      (31) Tagmatarchis, N.; Prato, M. Synlett 2003, 0, 768.

    32. [32]

      (32) Tagmatarchis, N.; Prato, M. J. Mater. Chem. 2004, 14, 437. doi: 10.1039/b314039c

    33. [33]

      (33) Prato, M. J. Mater. Chem. 1997, 7, 1097. doi: 10.1039/a700080d

    34. [34]

      (34) Quintana, M.; Spyrou, K.; Grzelczak, M.; Browne, W. R.; Rudolf, P.; Prato, M. ACS Nano 2010, 4, 3527. doi: 10.1021/nn100883p

    35. [35]

      (35) Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0

    36. [36]

      (36) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169

    37. [37]

      (37) BlöCHL, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953

    38. [38]

      (38) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.

    39. [39]

      (39) Wang, J. G.; Lv, Y. A.; Li, X. N.; Dong, M. D. J. Phys. Chem. C 2009, 113, 890. doi: 10.1021/jp810277b

    40. [40]

      (40) Zhang, L. P.; Xia, Z. H. J. Phys. Chem. C 2011, 115, 11170.


  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    10. [10]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    11. [11]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    15. [15]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    16. [16]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    17. [17]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    18. [18]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    19. [19]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    20. [20]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

Metrics
  • PDF Downloads(579)
  • Abstract views(819)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return