Citation:
CAI Qian, CAI Qiu-Xia, ZHUANG Gui-Lin, ZHONG Xing, WANG Xin-De, LI Xiao-Nian, WANG Jian-Guo. “External Anchoring Sites” for Noble Metal Nanowires on Deprotonated 1,3-Dipolar Cycloaddition Graphene[J]. Acta Physico-Chimica Sinica,
;2014, 30(4): 640-645.
doi:
10.3866/PKU.WHXB201402131
-
Density functional theory (DFT) calculations were used to study the adsorption of noble metal (Pt) on deprotonated 1,3-dipolar cycloaddition graphene to explore the mechanism of the formation of metal nanowires. The results show that: (1) Pt atoms that adsorb on 1,3-dipolar cycloaddition graphene induce the deprotonation of this 1,3-dipolar cycloaddition graphene and then the configuration changes to a deprotonated 1,3-dipolar cycloaddition graphene; (2) the noble metal anchoring site on the deprotonated 1,3-dipolar cycloaddition graphene is the ortho-carbon of nitrogen in the deprotonated pyridine alkyne, which was further confirmed by the average Bader charge of the ortho-carbon, and the average Bader charge of the ortho-carbon is as high as 1.0e; (3) Ptn nanowire can form between two neighboring deprotonated pyridine alkyne units of deprotonated 1,3-dipolar cycloaddition graphene, and the Ptn (n=3-6) nanowire adsorption configurations are more stable than the corresponding Ptn (n=3-6) cluster adsorption configurations; and (4) the electronic structure analysis of the composite shows that Pt metal adsorption does not essentially change the electronic property of deprotonated 1,3-dipolar cycloaddition graphene. The doped states of the Pt metal result in the Pt6 cluster adsorption composite being metallic while the doped states result in the Pt6 nanowire adsorption composite being semimetallic.
-
Keywords:
-
Deprotonation
, - Pt nanowire,
- Anchoring site,
- Electronic property,
- Semimetallicity
-
-
-
-
[1]
(1) Chan, K. T.; Neaton, J. B.; Cohen, M. L. Phys. Rev. B2008, 77, 235430. doi: 10.1103/PhysRevB.77.235430
-
[2]
(2) Chang, S. W.; Nair, A. K.; Buehler, M. J. J. Phys. -Condens. Mat ter 2012, 24, 245301. doi: 10.1088/0953-8984/24/24/245301
-
[3]
(3) Wang, S. Y.; Jiang, S. P.; Wang, X. Electrochim. Acta 2011, 56, 3338. doi: 10.1016/j.electacta.2011.01.016
-
[4]
(4) Xu, C.; Wang, X.; Zhu, J. W. J. Phys. Chem. C 2008, 112, 19841. doi: 10.1021/jp807989b
-
[5]
(5) Muszynski, R.; Seger, B.; Kamat, P. V. J. Phys. Chem. C 2008, 112, 5263. doi: 10.1021/jp800977b
-
[6]
(6) Entani, S.; Sakai, S.; Matsumoto, Y.; Naramoto, H.; Hao, T.; Maeda, Y. J. Phys. Chem. C 2010, 114, 20042. doi: 10.1021/jp106188w
-
[7]
(7) Wang, W. L.; Ma, Z. F. Acta Phys. -Chim. Sin. 2012, 28, 2879. [王万丽, 马紫峰. 物理化学学报, 2012, 28, 2879.] doi: 10.3866/PKU.WHXB201209252
-
[8]
(8) Palacios, J. J.; Fernandez-Rossier, J.; Brey, L. Phys. Rev. B 2008, 77, 195428. 10.1103/PhysRevB.77.195428
-
[9]
(9) Boukhvalov, D. W.; Katsnelson, M. I. Nano Lett. 2008, 8, 4373. doi: 10.1021/nl802234n
-
[10]
(10) Cretu, O.; Krasheninnikov, A. V.; Rodriguez-Manzo, J. A.; Sun, L. T.; Nieminen, R. M.; Banhart, F. Phys. Rev. Lett. 2010, 105, 196102. doi: 10.1103/PhysRevLett.105.196102
-
[11]
(11) Lahiri, J.; Lin, Y.; Bozkurt, P.; Oleynik, I. I.; Batzill, M. Nat. Nanotechnol. 2010, 5, 326.
-
[12]
(12) Lim, D. H.; Negreira, A. S.; Wilcox, J. J. Phys. Chem. C 2011, 115, 8961. doi: 10.1038/nnano.2010.53
-
[13]
(13) Srivastava, M. K.; Wang, Y.; Kemper, A. F.; Cheng, H. P. Phys. Rev. B 2012, 85, 165444. doi: 10.1103/PhysRevB.85.165444
-
[14]
(14) Dai, X. Q.; Li, Y. H.; Zhao, J. H.; Tang, Y. N. Acta Phys. -Chim. Sin. 2011, 27, 369. [戴宪起, 李艳慧, 赵建华, 唐亚楠. 物理化学学报, 2011, 27, 369.] doi: 10.3866/PKU.WHXB20110224
-
[15]
(15) Liu, H. T.; Liu, Y. Q.; Zhu, D. B. J. Mater. Chem. 2011, 21, 3335. doi: 10.1039/c0jm02922j
-
[16]
(16) Muhich, C. L.; Westcott, J. Y.; Morris, T. C.; Weimer, A. W.; Musgrave, C. B. J. Phys. Chem. C 2013, 117, 10523.
-
[17]
(17) Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Nano Lett. 2009, 9, 1752.
-
[18]
(18) Jafri, R. I.; Rajalakshmi, N.; Ramaprabhu, S. J. Mater. Chem. 2010, 20, 7114. doi: 10.1021/nl803279t
-
[19]
(19) Wu, X. Q.; Zong, R. L.; Mu, H. J.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2010, 26, 3002. [吴小琴, 宗瑞隆, 牟豪杰, 朱永法. 物理化学学报, 2010, 26, 3002.] doi: 10.3866/PKU.WHXB20101010
-
[20]
(20) Xie, P. Y.; Zhuang, G. L.; Lü, Y. A.; Wang, J. G.; Li, X. N. Act a Phys. -Chim. Sin. 2012, 28, 331. [解鹏洋, 庄桂林, 吕永安, 王建国, 李小年. 物理化学学报, 2012, 28, 331.] doi: 10.3866/PKU.WHXB201111021
-
[21]
(21) Wehling, T. O.; Novoselov, K. S.; Morozov, S. V.; Vdovin, E. E.; Katsnelson, M. I.; Geim, A. K.; Lichtenstein, A. I. Nano Lett. 2008, 8, 173. doi: 10.1021/nl072364w
-
[22]
(22) Boukhvalov, D. W.; Katsnelson, M. I. Phys. Rev. B 2008, 78, 085413. doi: 10.1103/PhysRevB.78.085413
-
[23]
(23) Medeiros, P. V. C.; Mascarenhas, A. J. S.; Mota, F. D.; de Castilho, C. M. C. Nanotechnology 2010, 21, 485701. doi: 10.1088/0957-4484/21/48/485701
-
[24]
(24) Xu, Y. F.; Liu, Z. B.; Zhang, X. L.; Wang, Y.; Tian, J. G.; Huang, Y.; Ma, Y. F.; Zhang, X. Y.; Chen, Y. S. Adv. Mater. 2009, 21, 1275. doi: 10.1002/adma.v21:12
-
[25]
(25) Georgakilas, V.; Bourlinos, A. B.; Zboril, R.; Steriotis, T. A.; Dallas, P.; Stubos, A. K.; Trapalis, C. Chem. Commun. 2010, 46, 1766. doi: 10.1039/b922081j
-
[26]
(26) Bosch-Navarro, C.; Coronado, E.; Marti-Gastaldo, C. Carbon 2013, 54, 201. doi: 10.1016/j.carbon.2012.11.027
-
[27]
(27) Georgakilas, V.; Kordatos, K.; Prato, M.; Guldi, D. M.; Holzinger, M.; Hirsch, A. J. Am. Chem. Soc. 2002, 124, 760. doi: 10.1021/ja016954m
-
[28]
(28) Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105. doi: 10.1021/cr050569o
-
[29]
(29) Singh, P.; Campidelli, S.; Giordani, S.; Bonifazi, D.; Bianco, A.; Prato, M. Chem. Soc. Rev. 2009, 38, 2214. doi: 10.1039/b518111a
-
[30]
(30) Maggini, M.; Scorrano, G.; Prato, M. J. Am. Chem. Soc. 1993, 115, 9798. doi: 10.1021/ja00074a056
-
[31]
(31) Tagmatarchis, N.; Prato, M. Synlett 2003, 0, 768.
-
[32]
(32) Tagmatarchis, N.; Prato, M. J. Mater. Chem. 2004, 14, 437. doi: 10.1039/b314039c
-
[33]
(33) Prato, M. J. Mater. Chem. 1997, 7, 1097. doi: 10.1039/a700080d
-
[34]
(34) Quintana, M.; Spyrou, K.; Grzelczak, M.; Browne, W. R.; Rudolf, P.; Prato, M. ACS Nano 2010, 4, 3527. doi: 10.1021/nn100883p
-
[35]
(35) Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0
-
[36]
(36) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169
-
[37]
(37) BlöCHL, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953
-
[38]
(38) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
-
[39]
(39) Wang, J. G.; Lv, Y. A.; Li, X. N.; Dong, M. D. J. Phys. Chem. C 2009, 113, 890. doi: 10.1021/jp810277b
-
[40]
(40) Zhang, L. P.; Xia, Z. H. J. Phys. Chem. C 2011, 115, 11170.
-
[1]
-
-
-
[1]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[2]
Wenjie SHI , Fan LU , Mengwei CHEN , Jin WANG , Yingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360
-
[3]
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
-
[4]
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
-
[5]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[6]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[7]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[8]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[9]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[10]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
-
[11]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
-
[12]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[13]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[14]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[15]
Tingting XU , Wenjing ZHANG , Yongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229
-
[16]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[17]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[18]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[19]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[20]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[1]
Metrics
- PDF Downloads(579)
- Abstract views(872)
- HTML views(4)