Citation: XU Bo-Shen, ZHAO Ying, SHEN Xian-Liang, CONG Yue, YIN Xiu-Mei, WANG Xin-Peng, YUAN Qing, YU Nai-Sen, DONG Bin. Dissipative Particle Dynamics Simulation of Multicompartment Micelles Self-Assembled from a Blend of Triblock Copolymers and Diblock Copolymers in an Aqueous Solution[J]. Acta Physico-Chimica Sinica, ;2014, 30(4): 646-653. doi: 10.3866/PKU.WHXB201402122 shu

Dissipative Particle Dynamics Simulation of Multicompartment Micelles Self-Assembled from a Blend of Triblock Copolymers and Diblock Copolymers in an Aqueous Solution

  • Received Date: 2 December 2013
    Available Online: 12 February 2014

    Fund Project:

  • A dissipative particle dynamics simulation was performed to study the influence of blending different linear triblock copolymers AxByCz and linear diblock copolymers AmBn in an aqueous solution on the morphology diversity of the formed multicompartment micelles. The chain lengths of the linear triblock copolymers and diblock copolymers were varied to find the conditions of the formation of multicompartment micelles. The multicompartment micelle morphologies formed by the different blends of linear triblock copolymer and linear diblock copolymer are various, such as "worm-like" micelles, "hamburger" micelles, "sphere on sphere" micelles, and "core-shell-corona" micelles etc. Controlling the overall morphology and inner structure of the multicompartment micelles was possible using binary blends of a linear triblock copolymer and a diblock copolymer. The density profiles and the pair distribution function were calculated to characterize the structures of the obtained multicompartment micelles. In this work, by blending a linear triblock copolymer and a linear diblock copolymer, complex multicompartment micelles were prepared and characterized. This work shows that simply blending linear triblock copolymers and linear diblock copolymers is an effective way to control the morphology and structure of multicompartment micelles. This is more economical and easy to form multicompartment micelles in the engineering experiments. Therefore, the blending of copolymers should be given more attention in future for the design of new multicompartment micelles.

  • 加载中
    1. [1]

      (1) Bates, F. S.; Hillmyer, M. A.; Lodge, T. P.; Bates, C. M.; Delaney, K. T.; Fredrickson, G. H. Science 2012, 336, 434. doi: 10.1126/science.1215368

    2. [2]

      (2) Weiss, P. S. ACS Nano 2008, 2, 1085. doi: 10.1021/nn800314e

    3. [3]

      (3) Li, Z. B.; Hillmyer, M. A.; Lodge, T. P. Macromolecules 2006, 39, 765. doi: 10.1021/ma052199b

    4. [4]

      (4) Kubowicz, S.; Baussard, J. F.; Lutz, J. F.; Thünemann, A. F.; Berlepsch, H. V.; Laschewsky, A. Angew. Chem. Int. Edit. 2005, 44, 5262.

    5. [5]

      (5) Thünemann, A. F.; Kubowicz, S.; Berlepsch, H. V.; Möhwald, H. Langmuir 2006, 22, 2506. doi: 10.1021/la0533720

    6. [6]

      (6) Kotzev, A.; Laschewsky, A.; Adriaensens, P.; Gelan, J. Macromolecules 2002, 35, 1091. doi: 10.1021/ma011047n

    7. [7]

      (7) Li, Z. B.; Hillmyer, M. A.; Lodge, T. P. Langmuir 2006, 22, 9409. doi: 10.1021/la0620051

    8. [8]

      (8) Synatschke, C. V.; Löbling, T. I.; Förtsch, M.; Hanisch, A.; Schacher, F. H.; Müller, A. H. E. Macromolecules 2013, 46, 6466. doi: 10.1021/ma400934n

    9. [9]

      (9) Hanisch, A.; Gröschel, A. H. ; Förtsch, M.; Löbling, T. I.; Schacher, F. H.; Müller, A. H. E. Polymer 2013, 54, 4528. doi: 10.1016/j.polymer.2013.05.071

    10. [10]

      (10) Hanisch, A.; Gröschel, A. H.; Förtsch, M.; Drechsler, M.; Jinnai, H.; Ruhland, T. M.; Schacher, F. H.; Müller, A. H. E. ACS Nano 2013, 7, 4030. doi: 10.1021/nn400031u

    11. [11]

      (11) Li, Z. B.; Kesselman, E.; Talmon, Y.; Hillmyer, M. A.; Lodge, T. P. Science 2004, 306, 98. doi: 10.1126/science.1103350

    12. [12]

      (12) Lodge, T. P.; Rasdal, A.; Li, Z. B.; Hillmyer, M. A. J. Am. Chem. Soc. 2005, 127, 17608. doi: 10.1021/ja056841t

    13. [13]

      (13) Zhong, C.; Liu, D. Macromol. Theory Simul. 2007, 16, 141.

    14. [14]

      (14) Liu, D.; Zhong, C. Polymer 2008, 49, 1407. doi: 10.1016/j.polymer.2008.01.034

    15. [15]

      (15) Xia, J.; Liu, D.; Zhong, C. Phys. Chem. Chem. Phys. 2007, 9, 5267. doi: 10.1039/b705359b

    16. [16]

      (16) Huang, C. I.; Fang, H. K.; Lin, C. H. Phys. Rev. E 2008, 77, 031804. doi: 10.1103/PhysRevE.77.031804

    17. [17]

      (17) Huang, C. I.; Chiou, Y. J.; Lan, Y. K. Polymer 2007, 48, 877. doi: 10.1016/j.polymer.2006.12.017

    18. [18]

      (18) Chou, S. H.; Tsao, H. K. J. Chem. Phys. 2006, 125, 194903.

    19. [19]

      (19) Zhao, Y.; Liu, Y. T.; Lu, Z. Y.; Sun, C. C. Polymer 2008, 49, 4899. doi: 10.1016/j.polymer.2008.08.063

    20. [20]

      (20) Zhao, Y.; You, L. Y.; Lu, Z. Y.; Sun, C. C. Polymer 2009, 50, 5333. doi: 10.1016/j.polymer.2009.09.014

    21. [21]

      (21) Xin, J.; Liu, D.; Zhong, C. J. Phys. Chem. B 2009, 113, 9364. doi: 10.1021/jp902300g

    22. [22]

      (22) Chen, H.; Ruckenstein, E. Soft Matter 2012, 8, 1327. doi: 10.1039/c2sm06968g

    23. [23]

      (23) Chang, H. Y.; Lin, Y. L.; Sheng, Y. J. Macromolecules 2012, 45, 4778. doi: 10.1021/ma3007366

    24. [24]

      (24) Han, M.; Hong, M.; Sim, E. J. Chem. Phys. 2011, 134, 204901. doi: 10.1063/1.3586804

    25. [25]

      (25) Jiang, T.;Wang, L.; Lin, S.; Lin, J.; Li, Y. Langmuir 2011, 27, 6440. doi: 10.1021/la201080z

    26. [26]

      (26) Hoogerbrugge, P. J.; Koelman, J. M. V. A. Europhys. Lett. 1992, 19, 155. doi: 10.1209/0295-5075/19/3/001

    27. [27]

      (27) Groot, R. D.;Warren, P. B. J. Chem. Phys. 1997, 107, 4423. doi: 10.1063/1.474784

    28. [28]

      (28) Español, P.;Warren, P.W. Europhys. Lett. 1995, 30, 191. doi: 10.1209/0295-5075/30/4/001

    29. [29]

      (29) Groot, R. D.; Madden, T. J. J. Chem. Phys. 1998, 108, 8713. doi: 10.1063/1.476300

    30. [30]

      (30) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, 1987.


  • 加载中
    1. [1]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    2. [2]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    6. [6]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    7. [7]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    8. [8]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    11. [11]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    17. [17]

      Kejie Li Dongmei Qi . Exploration and Practice of Traditional Chinese Medicine Chemistry Laboratory Management Based on the “Smart Laboratory”. University Chemistry, 2024, 39(10): 353-360. doi: 10.12461/PKU.DXHX202406080

    18. [18]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    19. [19]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

    20. [20]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

Metrics
  • PDF Downloads(546)
  • Abstract views(683)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return