Citation: XU Bo-Shen, ZHAO Ying, SHEN Xian-Liang, CONG Yue, YIN Xiu-Mei, WANG Xin-Peng, YUAN Qing, YU Nai-Sen, DONG Bin. Dissipative Particle Dynamics Simulation of Multicompartment Micelles Self-Assembled from a Blend of Triblock Copolymers and Diblock Copolymers in an Aqueous Solution[J]. Acta Physico-Chimica Sinica, ;2014, 30(4): 646-653. doi: 10.3866/PKU.WHXB201402122
-
A dissipative particle dynamics simulation was performed to study the influence of blending different linear triblock copolymers AxByCz and linear diblock copolymers AmBn in an aqueous solution on the morphology diversity of the formed multicompartment micelles. The chain lengths of the linear triblock copolymers and diblock copolymers were varied to find the conditions of the formation of multicompartment micelles. The multicompartment micelle morphologies formed by the different blends of linear triblock copolymer and linear diblock copolymer are various, such as "worm-like" micelles, "hamburger" micelles, "sphere on sphere" micelles, and "core-shell-corona" micelles etc. Controlling the overall morphology and inner structure of the multicompartment micelles was possible using binary blends of a linear triblock copolymer and a diblock copolymer. The density profiles and the pair distribution function were calculated to characterize the structures of the obtained multicompartment micelles. In this work, by blending a linear triblock copolymer and a linear diblock copolymer, complex multicompartment micelles were prepared and characterized. This work shows that simply blending linear triblock copolymers and linear diblock copolymers is an effective way to control the morphology and structure of multicompartment micelles. This is more economical and easy to form multicompartment micelles in the engineering experiments. Therefore, the blending of copolymers should be given more attention in future for the design of new multicompartment micelles.
-
-
[1]
(1) Bates, F. S.; Hillmyer, M. A.; Lodge, T. P.; Bates, C. M.; Delaney, K. T.; Fredrickson, G. H. Science 2012, 336, 434. doi: 10.1126/science.1215368
-
[2]
(2) Weiss, P. S. ACS Nano 2008, 2, 1085. doi: 10.1021/nn800314e
-
[3]
(3) Li, Z. B.; Hillmyer, M. A.; Lodge, T. P. Macromolecules 2006, 39, 765. doi: 10.1021/ma052199b
-
[4]
(4) Kubowicz, S.; Baussard, J. F.; Lutz, J. F.; Thünemann, A. F.; Berlepsch, H. V.; Laschewsky, A. Angew. Chem. Int. Edit. 2005, 44, 5262.
-
[5]
(5) Thünemann, A. F.; Kubowicz, S.; Berlepsch, H. V.; Möhwald, H. Langmuir 2006, 22, 2506. doi: 10.1021/la0533720
-
[6]
(6) Kotzev, A.; Laschewsky, A.; Adriaensens, P.; Gelan, J. Macromolecules 2002, 35, 1091. doi: 10.1021/ma011047n
-
[7]
(7) Li, Z. B.; Hillmyer, M. A.; Lodge, T. P. Langmuir 2006, 22, 9409. doi: 10.1021/la0620051
-
[8]
(8) Synatschke, C. V.; Löbling, T. I.; Förtsch, M.; Hanisch, A.; Schacher, F. H.; Müller, A. H. E. Macromolecules 2013, 46, 6466. doi: 10.1021/ma400934n
-
[9]
(9) Hanisch, A.; Gröschel, A. H. ; Förtsch, M.; Löbling, T. I.; Schacher, F. H.; Müller, A. H. E. Polymer 2013, 54, 4528. doi: 10.1016/j.polymer.2013.05.071
-
[10]
(10) Hanisch, A.; Gröschel, A. H.; Förtsch, M.; Drechsler, M.; Jinnai, H.; Ruhland, T. M.; Schacher, F. H.; Müller, A. H. E. ACS Nano 2013, 7, 4030. doi: 10.1021/nn400031u
-
[11]
(11) Li, Z. B.; Kesselman, E.; Talmon, Y.; Hillmyer, M. A.; Lodge, T. P. Science 2004, 306, 98. doi: 10.1126/science.1103350
-
[12]
(12) Lodge, T. P.; Rasdal, A.; Li, Z. B.; Hillmyer, M. A. J. Am. Chem. Soc. 2005, 127, 17608. doi: 10.1021/ja056841t
-
[13]
(13) Zhong, C.; Liu, D. Macromol. Theory Simul. 2007, 16, 141.
-
[14]
(14) Liu, D.; Zhong, C. Polymer 2008, 49, 1407. doi: 10.1016/j.polymer.2008.01.034
-
[15]
(15) Xia, J.; Liu, D.; Zhong, C. Phys. Chem. Chem. Phys. 2007, 9, 5267. doi: 10.1039/b705359b
-
[16]
(16) Huang, C. I.; Fang, H. K.; Lin, C. H. Phys. Rev. E 2008, 77, 031804. doi: 10.1103/PhysRevE.77.031804
-
[17]
(17) Huang, C. I.; Chiou, Y. J.; Lan, Y. K. Polymer 2007, 48, 877. doi: 10.1016/j.polymer.2006.12.017
-
[18]
(18) Chou, S. H.; Tsao, H. K. J. Chem. Phys. 2006, 125, 194903.
-
[19]
(19) Zhao, Y.; Liu, Y. T.; Lu, Z. Y.; Sun, C. C. Polymer 2008, 49, 4899. doi: 10.1016/j.polymer.2008.08.063
-
[20]
(20) Zhao, Y.; You, L. Y.; Lu, Z. Y.; Sun, C. C. Polymer 2009, 50, 5333. doi: 10.1016/j.polymer.2009.09.014
-
[21]
(21) Xin, J.; Liu, D.; Zhong, C. J. Phys. Chem. B 2009, 113, 9364. doi: 10.1021/jp902300g
-
[22]
(22) Chen, H.; Ruckenstein, E. Soft Matter 2012, 8, 1327. doi: 10.1039/c2sm06968g
-
[23]
(23) Chang, H. Y.; Lin, Y. L.; Sheng, Y. J. Macromolecules 2012, 45, 4778. doi: 10.1021/ma3007366
-
[24]
(24) Han, M.; Hong, M.; Sim, E. J. Chem. Phys. 2011, 134, 204901. doi: 10.1063/1.3586804
-
[25]
(25) Jiang, T.;Wang, L.; Lin, S.; Lin, J.; Li, Y. Langmuir 2011, 27, 6440. doi: 10.1021/la201080z
-
[26]
(26) Hoogerbrugge, P. J.; Koelman, J. M. V. A. Europhys. Lett. 1992, 19, 155. doi: 10.1209/0295-5075/19/3/001
-
[27]
(27) Groot, R. D.;Warren, P. B. J. Chem. Phys. 1997, 107, 4423. doi: 10.1063/1.474784
-
[28]
(28) Español, P.;Warren, P.W. Europhys. Lett. 1995, 30, 191. doi: 10.1209/0295-5075/30/4/001
-
[29]
(29) Groot, R. D.; Madden, T. J. J. Chem. Phys. 1998, 108, 8713. doi: 10.1063/1.476300
-
[30]
(30) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, 1987.
-
[1]
-
-
[1]
Hongling Yuan , Jialin Xie , Jiawei Wang , Jixiang Zhao , Jiayan Liu , Qing Feng , Wei Qi , Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041
-
[2]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[3]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[4]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[5]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[6]
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
-
[7]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[8]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[9]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[10]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[11]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[12]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[13]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[14]
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
-
[15]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[16]
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
-
[17]
Kejie Li , Dongmei Qi . Exploration and Practice of Traditional Chinese Medicine Chemistry Laboratory Management Based on the “Smart Laboratory”. University Chemistry, 2024, 39(10): 353-360. doi: 10.12461/PKU.DXHX202406080
-
[18]
Xiyuan Su , Zhenlin Hu , Ye Fan , Xianyuan Liu , Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059
-
[19]
Zongpei Zhang , Yanyang Li , Yanan Si , Kai Li , Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041
-
[20]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[1]
Metrics
- PDF Downloads(546)
- Abstract views(683)
- HTML views(7)