Citation: XU Ze-Qing, GAO Bao-Jiao, HOU Xiao-Dong. Twofold Influence of Nitro Substituent on Aromatic Ring for Photoluminescence Properties of Benzoic Acid-Functionalized Polystyrene and Eu(Ⅲ) Complexes[J]. Acta Physico-Chimica Sinica, ;2014, 30(4): 745-752. doi: 10.3866/PKU.WHXB201402101 shu

Twofold Influence of Nitro Substituent on Aromatic Ring for Photoluminescence Properties of Benzoic Acid-Functionalized Polystyrene and Eu(Ⅲ) Complexes

  • Received Date: 14 October 2013
    Available Online: 10 February 2014

    Fund Project:

  • Nitrobenzoic acid (NBA) was bound to the side chains of polystyrene (PS) to give nitrobenzoic acidfunctionalized polystyrene (PS-NBA). By a coordination reaction of PS-NBA and a Eu3+ ion, a binary polymerrare earth complex PS-(NBA)3-Eu(Ⅲ) was prepared. Additionally, with phenanthroline (Phen) as a small molecular ligand, the ternary polymer-rare earth complex PS-(NBA)3-Eu(Ⅲ)-Phen1 was also prepared. In this work, the influence of the nitro-substituted aromatic ring on the photoluminescence properties of the polymerrare earth complexes of benzoic acid (BA)-functionalized polystyrene and a Eu3+ ion were studied. The experimental results show that the nitro-substituted benzene ring had a twofold influence on the photoluminescence properties of the polymer-rare earth complexes of the benzoic acid-functionalized polystyrene and the Eu(Ⅲ) ion. Upon an intraligand charge transfer (ILCT), the nitro substituent causes the excitation energy of the BA ligand to dissipate and causes the triplet state energy of the BA ligand to decrease. As a result, the match between the lowest triplet level of the NBA ligand and the resonance energy level of the Eu(Ⅲ) ion improved significantly. The NBA ligand strongly sensitized the florescence emission of the Eu(Ⅲ) ion leading to the PS-(NBA)3-Eu(Ⅲ) and PS-(NBA)3-Eu(Ⅲ)-Phen1 complexes producing strong florescence emission, which shows the positive effect of the nitro-substituted benzene ring on the luminescence properties of the complexes. However, even though the solution of the complex was dilute the florescence emissions of the complexes weakened with an increase in the concentration of the complexes from 4.0×10-4 to 4.0×10-6 mol·L-4. This was caused by fluorescence resonance energy transfer (FRET) in which the fluorescence resonance energy of the excited complex was transferred to the nitro group as an‘acceptor’species. This indicates a negative effect of the nitro substituent on the benzene ring on the luminescence properties of the complexes.

  • 加载中
    1. [1]

      (1) Setua, S.; Menon, D.; Asok, A.; Nair, S.; Koyakutty, M. Biomaterials 2010, 31, 714. 10.1016/j.biomaterials.2009.09.090

    2. [2]

      (2) Shunmugam, R.; Tew, G. N. Polym. Adv. Technol. 2007, 18, 940.

    3. [3]

      (3) Li, D.-G.; Zhu, J.; Cheng, Z.-P.; Zhang, W.; Zhu, X.-L. React. Funct. Polym. 2009, 69, 240. 10.1016/j.reactfunctpolym.2009.01.008

    4. [4]

      (4) Zhang, R. X.; Gao, B. J.; Wei, X. P. Acta Phys. -Chim. Sin2012, 28, 223. [张瑞霞, 高保娇, 卫霄鹏. 物理化学学报, 2012, 28, 223.]. 10.3866/PKU.WHXB201111171

    5. [5]

      (5) Gao, B. J.; Fang, L.; Men, J. Y. Polymer 2012, 53, 4709. 10.1016/j.polymer.2012.07.059

    6. [6]

      (6) Maji, S.; Viswanathan, K. S. J. J. Lumines. 2008, 128, 1255. 10.1016/j.jlumin.2007.12.002

    7. [7]

      (7) Liu, T. H.; Duan, G. J.; Zhang, Y. P.; Fang, J.; Zeng, Z. Z. Spectrochim. Acta, Part A. 2009, 74, 843. 10.1016/j.saa.2009.06.062

    8. [8]

      (8) Hilder, M.; Junk, P. C.; Kynast, U. H.; Lezhnina, M. M. J. Photochem. Photobiol. A. 2009, 202, 10. 10.1016/j.jphotochem.2008.10.026

    9. [9]

      (9) Xu, Z. Q.; Gao, B. J.; Hou, X. D. Chinese Journal of Applied Chemistry. In press. [许泽清, 高保娇, 候晓东. 应用化学,2014,31,133].

    10. [10]

      (10) Heinz, B.; Schmierer, T.; Laimgruber, S.; Gilch, P. J. Photochem. Photobiol., A 2008, 199, 27. 10.1016/j.jphotochem.2008.06.011

    11. [11]

      (11) Gai, L. Z.; Mack, J.; Liu, H.; Xu, Z.; Lu, H.; Li, Z. F. Sens. Actuators, B 2013, 182, 1.

    12. [12]

      (12) Taha, Z. A.; Ajlouni, A. M.; Al-Hassan, K. A.; Hijazi, A. K.; Faiq, A. B. Spectrochim. Acta, Part A 2011, 81, 317. 10.1016/j.saa.2011.06.018

    13. [13]

      (13) Fu, Y. L.; Zhang, J. C.; Lv, Y. G.; Cao, W. L. Spectrochim. Acta, Part A 2008, 70, 646. 10.1016/j.saa.2007.08.014

    14. [14]

      (14) Yan, B.; Wang, W. J.; Song, Y. S. Spectrochim. Acta, Part A 2007, 66, 1115. 10.1016/j.saa.2006.05.024

    15. [15]

      (15) Pei, J.; Geng, X. T.; Yan, J. B.; Zhang, Y. H.; Zhao, Y. J. Alloy. Compd. 2006, 426, 363. 10.1016/j.jallcom.2006.02.030

    16. [16]

      (16) Yang, S. P.; Yang, H.; Yu, X. B.; Wang, Z. M. J. Mol. Struct. 2003, 659, 97. 10.1016/j.molstruc.2003.08.008

    17. [17]

      (17) Tsaryuka, V.; Kudryashova, V.; Gawryszewska, P.; Szostak, R.; Vologzhanina, A. K.; Klemenkova, Z.; Legendziewicz, J.; Zolin, V. J. Photochem. Photobiol. A 2012, 239, 37.

    18. [18]

      (18) Marmodée, B.; Klerk, J. S.; Ariese, F.; oijer, C.; Kumke, M. U. Anal. Chim. Acta 2009, 652, 285.. 10.1016/j.aca.2009.06.006

    19. [19]

      (19) Sivakumar, S.; Reddy, M. L. P.; Cowley, A. H.; Vasudevan, K. V. Dalton Transactions 2010, 39, 776. 10.1039/b917256d

    20. [20]

      (20) Yan, C. H.; Hu, H. H.; Xu, C. J.; Zhu, W.; Zhang, M.; Bu, X. R. J. Photochem. Photobiol. A 2009, 204, 19. 10.1016/j.jphotochem.2009.02.012

    21. [21]

      (21) Liu, D.; Wang, Z. G.; Yu, H.; You, J. Eur. Polym. J. 2009, 45, 2260. 10.1016/j.eurpolymj.2009.05.014

    22. [22]

      (22) Chu, F. H.; Yang, J. J. Optik. 2011, 122, 2246. 10.1016/j.ijleo.2011.03.002

    23. [23]

      (23) Rosso, P. G. D.; Almassio, M. F.; Palomar, G. R.; Garay, R. O. Sens. Actuators, B 2011, 160, 524.

    24. [24]

      (24) Patra, D.; Mishra, A. K. Sens. Actuators, B 2001, 80, 278.. 10.1016/j.snb.2011.08.021


  • 加载中
    1. [1]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    2. [2]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . CeO2/Bi19Br3S27 S型异质结的高效界面电荷转移用于增强光催化CO2还原. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    3. [3]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    4. [4]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    5. [5]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    6. [6]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    7. [7]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    8. [8]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    9. [9]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    10. [10]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    11. [11]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    14. [14]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    15. [15]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    16. [16]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    17. [17]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    18. [18]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    19. [19]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    20. [20]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

Metrics
  • PDF Downloads(470)
  • Abstract views(772)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return