Citation: GAO Peng, LI Feng, ZHAO Ning, WANG Hui, WEI Wei, SUN Yu-Han. Preparation of Cu/Zn/Al/(Zr)/(Y) Catalysts from Hydrotalcite-Like Precursors and Their Catalytic Performance for the Hydrogenation of CO2 to Methanol[J]. Acta Physico-Chimica Sinica, ;2014, 30(6): 1155-1162. doi: 10.3866/PKU.WHXB201401252
-
Cu/Zn/Al/(Zr)/(Y) hydrotalcite-like compounds with Cu:Zn:Al:Zr:Y atomic ratios of 2:1:1:0:0, 2:1: 0.8:0.2:0, 2:1:0.8:0:0.2, and 2:1:0.8:0.1:0.1 were prepared using the coprecipitation method. The mixed oxides were then obtained by the calcination of the precursors at 500 ℃ in air, and subsequently evaluated in terms of their catalytic performance for the synthesis of methanol from the hydrogenation of CO2. The asprepared samples were characterized by X-ray diffraction (XRD), thermogravimetric (TG) analysis, N2 adsorption, reactive N2O adsorption, H2 temperature-programmed reduction (H2-TPR), and H2/CO2 temperature-programmed desorption (H2/CO2 TPD) techniques. The results of these analyses showed that the BET specific surface area increased significantly with the introduction of Zr and Y, which was related to the amount of H2O and CO2 evolved from the precursors during calcination. The Cu specific surface area and Cu dispersion properties increased in the order of Cu/Zn/Al
2 revealed that the CO2 conversion was dependent on the Cu specific surface area, and the CH3OH selectivity increased linearly as the proportion of strongly basic sites increased. The introduction of Zr and Y therefore favored the production of methanol and the maximum CH3OH yield was obtained over the Cu/Zn/Al/Zr/Y catalyst. -
-
[1]
(1) Choudhury, J. ChemCatChem 2012, 4 (5), 609. doi: 10.1002/cctc.201100495
-
[2]
(2) Olah, G. A.; Geoppert, A.; Prakash, G. K. S. Beyond Oil and Gas: the Methanol Economy, 1st ed.;Wiley-VCH:Weinheim, 2006; pp 173-187, 239-245.
-
[3]
(3) Pontzen, F.; Liebner,W.; Gronemann, V.; Rothaemel, M.; Ahlers, B. Catal. Today 2011, 171 (1), 242. doi: 10.1016/j.cattod.2011.04.049
-
[4]
(4) Yang, R. Q.; Yu, X. C.; Zhang, Y.; Li,W. Z.; Tsubaki, N. Fuel 2008, 87 (4-5), 443. doi: 10.1016/j.fuel.2007.06.020
-
[5]
(5) Jun, K.W.; Shen,W. J.; Rao, K. S. R.; Lee, K.W. Appl. Catal. A: Gen. 1998, 174, 231. doi: 10.1016/S0926-860X(98)00195-1
-
[6]
(6) Hong, Z. S.; Cao, Y.; Deng, J. F.; Fan, K. N. Catal. Lett. 2002, 82 (1-2), 37.
-
[7]
(7) Gao, P.; Li, F.; Zhang, L. N.; Zhao, N.; Xiao, F. K.;Wei,W.; Zhong, L. S.; Sun, Y. H. Journal of CO 2 Utilization 2013, 2, 16. doi: 10.1016/j.jcou.2013.06.003
-
[8]
(8) Wang, J.; Chen, H. B.; Yun, H.; Lin, J. D.; Yi, J.; Zhang, H. B.; Liao, D.W. Acta Phys. -Chim. Sin. 2003, 19 (1), 65. [王进, 陈鸿博, 云虹, 林敬东, 易军, 张鸿斌, 廖代伟. 物理化学学报, 2003, 19 (1), 65.] doi: 10.3866/PKU.WHXB20030115
-
[9]
(9) Gao, P.; Li, F.; Zhan, H. J.; Zhao, N.; Xiao, F. K.;Wei,W.; Zhong, L. S.;Wang, H.; Sun, Y. H. J. Catal. 2013, 298, 51. doi: 10.1016/j.jcat.2012.10.030
-
[10]
(10) An, X.; Li, J. L.; Zuo, Y. Z.; Zhang, Q.;Wang, D. Z.;Wang, J. F. Catal. Lett. 2007, 118 (3-4), 264. doi: 10.1007/s10562-007-9182-x
-
[11]
(11) Fernandez, J. M.; Barriga, C.; Ulibarri, M. A.; Labajos, F. M.; Rives, V. Chem. Mater. 1997, 9 (1), 312. doi: 10.1021/cm9603720
-
[12]
(12) Zhang, L. H.; Li, F.; Evans, D. G.; Duan, X. Mater. Chem. Phys. 2004, 87 (2-3), 402. doi: 10.1016/j.matchemphys.2004.06.010
-
[13]
(13) Alejandre, A.; Medina, F.; Salagre, P.; Correig, X.; Sueiras, J. E. Chem. Mater. 1999, 11 (4), 939. doi: 10.1021/cm980500f
-
[14]
(14) Zhang, L. H.; Zheng, C.; Li, F.; Evans, D. G.; Duan, X. J. Mater. Sci. 2008, 43 (1), 237. doi: 10.1007/s10853-007-2167-8
-
[15]
(15) Gao, P.; Li, F.; Zhao, N.; Xiao, F. K.;Wei,W.; Zhong, L. S.; Sun, Y. H. Appl. Catal. A: Gen. 2013, 468, 442. doi: 10.1016/j.apcata.2013.09.026
-
[16]
(16) Shannon, R. D. Acta Crystallogr. A 1976, 32, 751. doi: 10.1107/S0567739476001551
-
[17]
(17) Wu, G. D.;Wang, X. L.; Chen, B.; Li, J. P.; Zhao, N.;Wei,W.; Sun, Y. H. Appl. Catal. A: Gen. 2007, 329, 106. doi: 10.1016/j.apcata.2007.06.031
-
[18]
(18) Velu, S.; Sabde, D. P.; Shah, N.; Sivasanker, S. Chem. Mater. 1998, 10 (11), 3451. doi: 10.1021/cm980185x
-
[19]
(19) Zhang, L. H.; Li, F.; Evans, D. G.; Duan, X. Ind. Eng. Chem. Res. 2010, 49 (13), 5959. doi: 10.1021/ie9019193
-
[20]
(20) Gao, P.; Li, F.; Xiao, F. K.; Zhao, N.; Sun, N. N.;Wei,W.; Zhong, L. S.; Sun, Y. H. Catal. Sci. Technol. 2012, 2 (7), 1447. doi: 10.1039/c2cy00481j
-
[21]
(21) Cheng, J.; Yu, J. J.;Wang, X. P.; Li, L. D.; Li, J. J.; Hao, Z. P. Energy Fuels 2008, 22 (4), 2131. doi: 10.1021/ef8000168
-
[22]
(22) Xu, Z. P.; Zeng, H. C. J. Phys. Chem. B 2000, 104 (44), 10206. doi: 10.1021/jp001963n
-
[23]
(23) Trujillano, R.; Holgado, M. J.; Pigazo, F.; Rives, V. Physica B 2006, 373 (2), 267. doi: 10.1016/j.physb.2005.11.154
-
[24]
(24) Behrens, M.; Kasatkin, I.; Kuhl, S.;Weinberg, G. Chem. Mater. 2010, 22 (2), 386. doi: 10.1021/cm9029165
-
[25]
(25) Gao, P.; Li, F.; Xiao, F.; Zhao, N.;Wei,W.; Zhong, L. S.; Sun, Y. H. Catal. Today 2012, 194 (1), 9. doi: 10.1016/j.cattod.2012.06.012
-
[26]
(26) Guo, X. M.; Mao, D. S.; Lu, G. Z.;Wang, S.;Wu, G. S. J. Catal. 2010, 271, 178. doi: 10.1016/j.jcat.2010.01.009
-
[27]
(27) Guo, X. M.; Mao, D. S.; Lu, G. Z.;Wang, S. Acta Phys. -Chim. Sin. 2012, 28 (1), 170. [郭晓明, 毛东森, 卢冠忠, 王嵩. 物理化学学报, 2012, 28 (1), 170.] doi: 10.3866/PKU.WHXB201228170
-
[28]
(28) Arena, F.; Italiano, G.; Barbera, K.; Bordiga, S.; Bonura, G.; Spadaro, L.; Frusteri, F. Appl. Catal. A: Gen. 2008, 350, 16. doi: 10.1016/j.apcata.2008.07.028
-
[29]
(29) Guo, X.; Mao, D.; Lu, G.;Wang, S.;Wu, G. J. Mol. Catal. A: Chem. 2011, 345 (1-2), 60. doi: 10.1016/j.molcata.2011.05.019
-
[30]
(30) Wilmer, H.; Genger, T.; Hinrichsen, O. J. Catal. 2003, 215, 188. doi: 10.1016/S0021-9517(03)00003-4
-
[31]
(31) Waugh, K. C. Solid State Ionics 2004, 168 (3-4), 327. doi: 10.1016/j.ssi.2003.05.001
-
[32]
(32) Wu, G. D.;Wang, X. L.;Wei,W.; Sun, Y. H. Appl. Catal. A: Gen. 2010, 377, 107. doi: 10.1016/j.apcata.2010.01.023
-
[33]
(33) Liu, Y. X.; Sun, K. P.; Ma, H.W.; Xu, X. L.;Wang, X. L. Catal. Commun. 2010, 11 (10), 880. doi: 10.1016/j.catcom.2010.03.014
-
[34]
(34) Liu, X. M.; Lu, G. Q.; Yan, Z. F.; Beltramini, J. Ind. Eng. Chem. Res. 2003, 42 (25), 6518. doi: 10.1021/ie020979s
-
[35]
(35) Arena, F.; Barbera, K.; Italiano, G.; Bonura, G.; Spadaro, L.; Frusteri, F. J. Catal. 2007, 249, 185. doi: 10.1016/j.jcat.2007.04.003
-
[36]
(36) Gao, L. Z.; Au, C. T. J. Catal. 2000, 189, 1. doi: 10.1006/jcat.1999.2682
-
[1]
-
-
[1]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[2]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[3]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[4]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[5]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[6]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[7]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[8]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[9]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[10]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[11]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[12]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[13]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[14]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[15]
Wanmin Cheng , Juan Du , Peiwen Liu , Yiyun Jiang , Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066
-
[16]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[17]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[18]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[19]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[20]
Jian Jin , Jing Cheng , Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010
-
[1]
Metrics
- PDF Downloads(602)
- Abstract views(873)
- HTML views(12)