Citation: LI Yan-Rong, PEI Yi-Qiang, QIN Jing, ZHANG Miao. A Reaction Mechanismof Polycyclic Aromatic Hydrocarbons for Gasoline Surrogate Fuels TRF[J]. Acta Physico-Chimica Sinica, ;2014, 30(6): 1017-1026. doi: 10.3866/PKU.WHXB201401251
-
A detailed reaction mechanism consisting of 287 species and 1569 reactions for gasoline surrogate fuels TRF (toluene reference fuels) with particular emphasis on the development of an accurate model for the formation of large polycyclic aromatic hydrocarbons (PAHs) has been researched and developed in this study. Four different types of reaction pathway for the growth of the PAHs were added to the new mechanism with the largest chemical species of this mechanism being pyrene (C20H12). Species, such as acetylene (C2H2), propargyl (C3H3), vinylacetylene (C4H4), and hydrocarbons with odd number of carbon atoms, such as cyclopentadienyl (C5H5) and indenyl (C9H7), played an important role in the formation and growth of PAH molecules, based on the analysis of PAH rate of production. This mechanism could be used to predict the ignition delay timing, mole fractions of several small important species, such as the PAH precursors C2H2 and C3H4, and mole fractions of the PAHs in the flames of the primary reference fuels (PRF) and TRF. Comparisons between the calculated and experimental results indicated the od predictability of this mechanism over a wide range of temperatures, pressures, and equivalence ratios. Results showthat this TRF mechanismcan be used to reliably predict the soot precursor PAHs.
-
-
[1]
(1) Li, J.; ng, Y. F.; Li, W.; Chen, H. E.; Liu, J. Y.; Li, J. C.; Li, K.; Dou, H. L. Journal of Xi'an Jiaotong University 2010, 44 (7), 9. [李俊, 宫艳峰, 李伟, 陈海娥, 刘金玉,李金城, 李康, 窦慧莉.西安交通大学学报, 2010, 44 (7), 9.] doi: 10.7652/xjtuxb201401001
-
[2]
(2) Gao, J. H.; Li, Y.; Gao, J. D.; Liu, S. X.; Qin, K. J. Journal of Jilin University (Engineering and Technology Edition) 2010, 40, 947. [高俊华,李淯,高继东, 刘双喜,秦孔建. 吉林大学学报(工学版), 2010, 40, 947.]
-
[3]
(3) Pan, S. Z.; Song, C. L.; Pei, Y. Q.; Yuan, D.;Wu, W. L. Journal of Tianjin University (Science and Technology Edition) 2013, 7, 629. [潘锁柱, 宋崇林,裴毅强, 原达,吴威龙. 天津大学学报(自然科学与工程技术版), 2013, 7, 629.]
-
[4]
(4) Wang, H.; Frenklach, M. Combust. Flame 1997, 110, 173. doi: 10.1016/S0010-2180(97)00068-0
-
[5]
(5) Raj, A.; Prada, I. D. C.; Amer, A. A.; Chung, S. H. Combust. Flame 2012, 159, 500. doi: 10.1016/j.combustflame.2011.08.011
-
[6]
(6) Andrae, J. C. G.; Head, R. A. Combust. Flame 2009, 156, 842. doi: 10.1016/j.combustflame.2008.10.002
-
[7]
(7) Blanquart, G.; Pepiot-Desjardins, P.; Pitsch, H. Combust. Flame 2009, 156, 588. doi: 10.1016/j.combustflame.2008.12.007
-
[8]
(8) Sakai, Y.; Miyoshi, A.; Koshi, M.; Pitz, W. J. Proc. Combust. Inst. 2009, 32, 411. doi: 10.1016/j.proci.2008.06.154
-
[9]
(9) Andrae, J. C. G.; Brinck, T.; Kalghatgi, G. T. Combust. Flame 2008, 155, 696. doi: 10.1016/j.combustflame.2008.05.010
-
[10]
(10) Marchal, C.; Delfau, J. L.; Vovelle, C.; Moréac, G.; Mounaim-Rousselle, C.; Mauss, F. Proc. Combust. Inst. 2009, 32, 753. doi: 10.1016/j.proci.2008.06.115
-
[11]
(11) Zhang, L.; Cai, J.; Zhang, T.; Qi, F. Combust. Flame 2010, 157, 1686. doi: 10.1016/j.combustflame.2010.04.002
-
[12]
(12) Sakai, Y.; Ozawa, H.; Ogura, T.; Miyoshi, A.; Koshi, M.; Pize, W. J. Effects of Toluene Addition to Primary Reference Fuel at High Temperature. In Powertrain&Fluid Systems, SAE Internal, Rosemont, lllinois, Oct. 29-Nov. 1, 2007.
-
[13]
(13) Frenklach, M.; Wang, H. Proc. Combust. Inst. 2002, 29, 2307. doi: 10.1016/S1540-7489(02)80281-4
-
[14]
(14) D′Anna, A.; Kent, J. H. Combust. Flame 2003, 132, 715. doi: 10.1016/S0010-2180(02)00522-9
-
[15]
(15) McEnally, C. S.; Pfefferle, L. D.; Atakan, B.; Kohse-Hinghaus, K. Prog. Energy Combust. Sci. 2006, 32, 247. doi: 10.1016/j.pecs.2005.11.003
-
[16]
(16) Moriarty, N. W.; Frenklach, M. Proc. Combust. Inst. 2000, 28, 2563. doi: 10.1016/S0082-0784(00)80673-6
-
[17]
(17) Aguilera-Iparraguirre, A. J.; Klopper, W. J. Chem. Theory Comput. 2007, 3, 139. doi: 10.1021/ct600255u
-
[18]
(18) Marinov, N. M.; Pitz, W. J.; Westbrook, C. K.; Castaldi, M. J.; Senkan, S. M. Combust. Sci. Technol. 1996, 116, 211.
-
[19]
(19) Sharma, S.; Green, W. H. J. Phys. Chem. A 2009, 113, 8871. doi: 10.1021/jp900679t
-
[20]
(20) Slavinskaya, N. A.; Frank, P. Combust. Flame 2009, 156, 1705. doi: 10.1016/j.combustflame.2009.04.013
-
[21]
(21) Kee, R. J.; Rupley, F. M.; Miller, J. A.; Coltrin, M. E.; et al . CHEMKIN PRO, Release 15112; Reaction Design: San Die , 2011.
-
[22]
(22) Fieweger, K.; Blumenthal, R.; Adomeit, G. Combust. Flame 1997, 109 (4), 599. doi: 10.1016/S0010-2180(97)00049-7
-
[23]
(23) Shen, H. P. S.; Vanderover, J.; Oehlschlaeger, M. A. Proc. Combust. Inst. 2009, 32,165. doi: 10.1016/j.proci.2008.05.004
-
[24]
(24) Gauthier, B. M.; Davidson, D. F.; Hanson, R. K. Combust. Flame 2004, 139, 300. doi: 10.1016/j.combustflame.2004.08.015
-
[25]
(25) Vanhove, G.; Petit, G.; Minetti, R. Combust. Flame 2006, 145, 512. doi: 10.1016/j.combustflame.2006.01.002
-
[26]
(26) Bakali, A. E.; Delfau, J. L.; Vovelle, C. Combust. Sci. Technol. 1998, 140, 69. doi: 10.1080/00102209808915768
-
[27]
(27) Inal, F.; Senkan, S. M. Combust. Flame 2002, 132, 16.
-
[1]
-
-
[1]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[2]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[3]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[4]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[5]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[6]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[7]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[8]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[9]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[10]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[11]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[12]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[13]
Zuozhong Liang , Lingling Wei , Yiwen Cao , Yunhan Wei , Haimei Shi , Haoquan Zheng , Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103
-
[14]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[15]
Shouyun Yu , Wenwei Zhang , Shunliu Deng , Weihong Li , Yanping Ren , Yijun Li , Yuan Chun , Houjin Li , Li Ma , Faqiong Zhao , Xiuqiong Zeng , Shuyong Zhang , Changgong Meng , Jianrong Zhang . Reflection and Practice on the Construction of Fundamental Chemistry Experiments under the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 52-57. doi: 10.12461/PKU.DXHX202408009
-
[16]
Quanguo Zhai , Peng Zhang , Wenyu Yuan , Ying Wang , Shu'ni Li , Mancheng Hu , Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065
-
[17]
Zhichang Xiao , Xiaohui Li , Ling Zhang , Huimin Liu . Exploration of Ideological and Political Construction in University Foundation Course of Organic Chemistry. University Chemistry, 2024, 39(2): 314-320. doi: 10.3866/PKU.DXHX202308058
-
[18]
Hongyan Chen , Zhuoxun Wei , Chengyong Su , Song Gao . Introduction to Undergraduate Education and Teaching Reform in Basic Disciplines: the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 1-7. doi: 10.12461/PKU.DXHX202409125
-
[19]
Wei Yan , Cailing Wang , Li Wang , Yonghai Song . Promoting the Reform of Basic Chemistry Experimental Courses through Laboratory Skill Competition. University Chemistry, 2024, 39(10): 189-194. doi: 10.3866/PKU.DXHX202403042
-
[20]
Haiyan Liu , Xiaojun Wu , Ying Yang , Qiong Ding , Faqiong Zhao . Meticulous Preparation for Basic Chemistry Experimental Teaching: a Case of Wuhan University. University Chemistry, 2024, 39(10): 318-324. doi: 10.12461/PKU.DXHX202405132
-
[1]
Metrics
- PDF Downloads(599)
- Abstract views(797)
- HTML views(66)