Citation: CHAI Xiao-Yan, ZHU Cai-Zhen, HE Chuan-Xin, ZHANG Guang-Zhao, LIU Jian-Hong. Modification of Microvoid Defects in Polyacrylonitrile-Based Carbon Fibers by a Liquid Oli mer of Acrylonitrile[J]. Acta Physico-Chimica Sinica, ;2014, 30(4): 753-760. doi: 10.3866/PKU.WHXB201401241 shu

Modification of Microvoid Defects in Polyacrylonitrile-Based Carbon Fibers by a Liquid Oli mer of Acrylonitrile

  • Received Date: 14 October 2013
    Available Online: 24 January 2014

    Fund Project:

  • The strength of industrial carbon fibers (CFs) is far lower than their theoretical strength because of defects in the microstructure of carbon fibers and these are the main restrictions in improving their performance. The most effective way to improve the strength of CFs is to reduce the amount of these defects. We thus report a novel method using a liquid oli mer of acrylonitrile (LAN) to modify the defects. Briefly, Polyacrylonitrile (PAN)-based CFs T300 were infused into LAN, and subsequently oxidized in air and carbonized in nitrogen. Their tensile strength increased by 25%. Two-dimensional small angle X-ray scattering (SAXS) was used to characterize the variation in length of the microvoids (L), the chord length of cross section lp, the orientation angle (Beq), and the relative volume (Vrel). The results show that the length, orientation, angle and relative volume of the microvoids were much lower and the tensile property improved. The improvement in the tensile property comes from the modification of defects in CFs T300 by LAN. The BET method and scanning electron microscopy (SEM) were used to characterize the specific surface area and the morphology of T300 before and after LAN treatment. The results show that after the treatment of LAN the specific surface area decreased and the amount of surface defects also decreased.We further prove that the liquid oli mer of acrylonitrile can modify the defects in CFs. X-ray photoelectron spectroscopy (XPS) was used to study the chemical composition of LAN-treated CF surfaces. The results show that the relative content of oxygen-containing functional groups on the surface of the CFs (C―OH, C=O, HO―C=O) increased significantly. The increase in oxygen-containing groups enhanced the surface polarity of the CFs, improving the interaction between the treated CFs and the epoxy resin, which acts as a carbon fiber substrate. Therefore, the mechanical properties of the CFs improved.

  • 加载中
    1. [1]

      (1) He, F. Carbon Fiber and Graphite fiber; Chemical Industry Press: Beijing, 2010; pp 14-19. [贺福. 碳纤维及石墨纤维. 北京: 化学工业出版社, 2010: 14-19.]

    2. [2]

      (2) He, F.; Wang, R. E.; Zhao, J. G. New Chemical Materials 1999, 27, 6. [贺福, 王润娥, 赵建国. 化工新型材料, 1999, 27, 6.]

    3. [3]

      (3) Michael, D.C. International Fiber Journal 2007,4, 62.

    4. [4]

      (4) Zhang, Y.; Zhao, J. X.; Pang, D. New Chemical Materials. 2003, 31, 25. [张莹, 赵炯心, 潘鼎. 化工新型材料, 2003, 31, 25.]

    5. [5]

      (5) Jones, L.E; Thrower, P.A. Carbon 1991,29,251. doi: 10.1016/0008-6223(91)90076-U

    6. [6]

      (6) Wen, Y.; Lu Y.; Xiao H.; Qin X. Mater. Des. 2012,36,728. doi: 10.1016/j.matdes.2011.11.051

    7. [7]

      (7) Xiao, H.; Lu, Y. G; Wang, M. H. Carbon 2013,50,427.

    8. [8]

      (8) Badawy, S. M.; Dessouki, A. M. J. Phys. Chem. B 2003,107,11273. doi: 10.1021/jp034603j

    9. [9]

      (9) Xu, Z.; Huang, Y.; Min, C.; Chen, L. Radiat. Phys. Chem. 2010,79, 839. doi: 10.1016/j.radphyschem.2010.03.002

    10. [10]

      (10) Sung, M. G.; Sassa, K.; Tagawa, T.; Miyata, T.; Ogawa, H.; Doyama, M.; Yamada, S.; Asai, S. Carbon 2002, 40, 2013. doi: 10.1016/S0008-6223(02)00059-3

    11. [11]

      (11) Sung, M. G.; Kawabata, Y. Mater. Sci. Eng. A. 2008, 88, 247.

    12. [12]

      (12) Krishnomurti, P. J. Chem. Phys. 1930, 5, 473.

    13. [13]

      (13) Warren, B. E. J. Chem. Phys. 1934, 2, 551. doi: 10.1063/1.1749528

    14. [14]

      (14) Perret, R.; Ruland, W. J. Appl. Cryst. 1968, 1, 308. doi: 10.1107/S0021889868005558

    15. [15]

      (15) Perret, R.; Ruland, W. J. Appl. Cryst. 1969, 2, 209. doi: 10.1107/S0021889869006996

    16. [16]

      (16) Shioya, M.; Kobayashi, H.; Tanaka, T. Compos. Sci. Technol. 2007, 67,3209. doi: 10.1016/j.compscitech.2007.04.005

    17. [17]

      (17) Shioya, M.; Kawazoe, T.; Okazaki, R. Macromolecules 2008, 41,4758. doi: 10.1021/ma7027616

    18. [18]

      (18) Perret, R.; Ruland, W. J. Appl. Cryst. 1970, 3, 26.

    19. [19]

      (19) Zhu, C.Z.; Liu, X. F.; Yu, X.; Zhao, N.; Liu, J. H.; Xu, J. Carbon 2012, 50, 235.

    20. [20]

      (20) Sauder, C.; Lamon, J.; Pailler. R. Carbon 2004, 42, 715. doi: 10.1016/j.carbon.2003.11.020

    21. [21]

      (21) Thunemann, A. F.; Ruland, W. Macromolecules 2000, 33, 184.

    22. [22]

      (22) Thunemann, A. F.; Ruland, W. Macromolecules 2000, 33, 2626. doi: 10.1021/ma991298k

    23. [23]

      (23) Liu, Z. Y.; Zheng, J. T.; Wang, M. Z.; Zhang, B. J. Acta Phys. -Chim. Sin. 2001, 17,594. [刘振宇, 郑经堂, 王茂章, 张碧江. 物理化学学报, 2001, 17,594.] doi: 10.3866/PKU.WHXB20010704

    24. [24]

      (24) Lee , Y. S,; Lee, B.K. Carbon 2002, 40, 2461. doi: 10.1016/S0008-6223(02)00152-5

    25. [25]

      (25) Liu, J.; Tian, Y. L.; Chen, Y. J.; Liang, J. Y.; Zhang, L. F.; Fong, H. Mater. Chem. Phys. 2010,122, 548. doi: 10.1016/j.matchemphys.2010.03.045


  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    3. [3]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    6. [6]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    7. [7]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    8. [8]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    9. [9]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    10. [10]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    11. [11]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    12. [12]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    13. [13]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    16. [16]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    17. [17]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    18. [18]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    19. [19]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    20. [20]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

Metrics
  • PDF Downloads(659)
  • Abstract views(622)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return