Citation: WANG Chun, KANG Jian-Xin, WANG Li-Li, CHEN Ting-Wen, LI Jie, ZHANG Dong-Feng, GUO Lin. Synthesis of Quasi-Concave Pt-Ni Nanoalloys via Overgrowth and Their Catalytic Performance towards Methanol Oxidation[J]. Acta Physico-Chimica Sinica, ;2014, 30(4): 708-714. doi: 10.3866/PKU.WHXB201401222 shu

Synthesis of Quasi-Concave Pt-Ni Nanoalloys via Overgrowth and Their Catalytic Performance towards Methanol Oxidation

  • Received Date: 3 December 2013
    Available Online: 22 January 2014

    Fund Project:

  • Quasi-concave Pt-Ni alloy nanostructures were synthesized via a solvothermal method, and were thought to form by epitaxial growth on the 12 vertexes of a cuboctahedron. A simultaneous etchin vergrowth process was proposed to illustrate the growth mechanism. The epitaxial layer was of different composition from the core, as confirmed by high-resolution transmission electron microscopy, selectedarea electron diffraction and powder X-ray diffraction characterizations. The concave structures exhibited high catalytic activity towards methanol oxidation. The mass-normalized catalytic activity of the concave products was ~3 times that of pure Pt nanoparticles synthesized under similar conditions, and 13.6 times that of commercial Pt/C. X-ray photoelectron spectroscopy characterization indicated that the binding energy of the concave structures shifted to lower energy, relative to the pure Pt. The modified electronic structure by introducing Ni was thought to be responsible for the enhanced catalytic activity.

  • 加载中
    1. [1]

      (1) Zhang, H.; Jin, M. S.; Xia, Y. N. Chem. Soc. Rev. 2012, 41, 8035. doi: 10.1039/c2cs35173k

    2. [2]

      (2) Peng, Z. M.; Yang, H. Nano Today 2009, 4, 143. doi: 10.1016/j.nantod.2008.10.010

    3. [3]

      (3) Sun, S. H.; Zhang, G. X.; Geng, D. S.; Chen, Y. G.; Li, R. Y.; Cai, M.; Sun, X. L. Angew. Chem. Int. Ed. 2011, 50, 422.

    4. [4]

      (4) Debe1, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115

    5. [5]

      (5) Gu, J.; Zhang, Y. W.; Tao, F. Chem. Soc. Rev. 2012, 41, 8050. doi: 10.1039/c2cs35184f

    6. [6]

      (6) Cailuo, N.; Oduro, W.; Kong, A. T. S.; Clifton, L.; Yu, K. M. K.; Thiebaut, B.; Cookson, J.; Bishop, P.; Tsang, S. C. ACS Nano. 2008, 2, 2547. doi: 10.1021/nn800400u

    7. [7]

      (7) Zhou, X. W.; Gan, Y. L.; Sun, S. G. Acta Phys. -Chim. Sin. 2012, 28, 2071. [周新文,甘亚利, 孙世刚. 物理化学学报, 2012, 28, 2071.] doi: 10.3866/PKU.WHXB201205031

    8. [8]

      (8) Peng, C.; Cheng, X.; Zhang, Y.; Chen, L.; Fan, Q. B. Acta Phys. -Chim. Sin. 2004, 20, 436. [彭程, 程璇, 张颖, 陈羚, 范钦柏. 物理化学学报, 2004, 20, 436.] doi: 10.3866/PKU.WHXB20040423

    9. [9]

      (9) Nøskov, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 937. doi: 10.1073/pnas.1006652108

    10. [10]

      (10) Kelly, T. G.; Chen, J. G.; Chem. Soc. Rev. 2012, 41, 8021. doi: 10.1039/c2cs35165j

    11. [11]

      (11) Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Nat. Mater. 2008, 7, 333. doi: 10.1038/nmat2156

    12. [12]

      (12) Nilekar, A. U.; Alayoglu, S.; Eichhorn, B.; Mavrikakis, M. J. Am. Chem. Soc. 2010, 132, 7418. doi: 10.1021/ja101108w

    13. [13]

      (13) Zhang, L. J.; Xia, D. G.; Wang, Z. Y.; Yuan, R.; Wu, Z. Y. Acta Phys. -Chim. Sin. 2005, 21, 287. [张丽娟, 夏定国, 王振尧, 袁嵘, 吴自玉. 物理化学学报, 2005, 21, 287.] doi: 10.3866/PKU.WHXB20050312

    14. [14]

      (14) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Science 2007, 315, 493. doi: 10.1126/science.1135941

    15. [15]

      (15) Mu, R. T.; Fu, Q.; Xu, H.; Zhang, H.; Huang,Y. Y.; Jiang, Z.;Zhang, S.; Tan, D. L.; Bao, X. H. J. Am. Chem. Soc. 2011, 133, 1978 doi: 10.1021/ja109483a

    16. [16]

      (16) Wu, J. B.; Gross, A.; Yang, H. Nano Lett. 2011, 11, 798. doi: 10.1021/nl104094p

    17. [17]

      (17) Zhang, J.; Yang, H. Z.; Fang, J. Y.; Zou, S. Z. Nano Lett. 2010, 10, 638. doi: 10.1021/nl903717z

    18. [18]

      (18) Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Atwan, M. H.; Tessema, M. M. J. Am. Chem. Soc. 2012, 134, 8535. doi: 10.1021/ja300756y

    19. [19]

      (19) Jiang, Q.; Jiang, L. H.; Hou, H. Y.; Qi, J.; Wang, S. L.; Sun, G. Q. J. Phys. Chem. C 2010, 114, 19714. doi: 10.1021/jp1039755

    20. [20]

      (20) Huang, X. Q.; Zhu, E. B.; Chen, Y.; Li, Y. J.; Chiu, C. Y.; Xu, Y. X.; Lin, Z. Y.; Duan, X. F.; Huang, Y. Adv. Mater. 2013, 25, 2974. doi: 10.1002/adma.v25.21

    21. [21]

      (21) Li, J. H.; Zhou, W.; Yao, M.; Guo, L.; Li, Y. M.; Yang, S. H. J. Am. Chem. Soc. 2009, 131, 2959. doi: 10.1021/ja808784s

    22. [22]

      (22) Berkovitch, N.; Ginzburg, P.; Orenstein, M. Nano Lett. 2010, 10, 1405. doi: 10.1021/nl100222k

    23. [23]

      (23) Tian, N.; Zhou, Z. Y.; Sun, S. G. J. Phys. Chem. C 2008, 112, 19801. doi: 10.1021/jp804051e

    24. [24]

      (24) Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. D. J. Am. Chem. Soc. 2010, 132, 268. doi: 10.1021/ja906954f

    25. [25]

      (25) Xia, X.; Zeng, J.; Mcdearmon, B.; Zheng, Y.; Li, Q.; Xia, Y. Angew. Chem. Int. Ed. 2011, 50, 12542. doi: 10.1002/anie.201105200

    26. [26]

      (26) Jiang, Q.; Jiang, Z.; Zhang, L.; Lin, H.; Yang, N.; Li, H.; Liu, D.; Xie, Z.; Tian, Z. Nano Res. 2011, 4, 612. doi: 10.1007/s12274-011-0117-x

    27. [27]

      (27) Wu, H. L.; Chen, C. H.; Huang, M. H. Chem. Mater. 2009, 21, 110. doi: 10.1021/cm802257e

    28. [28]

      (28) Huang, X. Q.; Tang, S. H.; Zhang, H. H.; Zhou, Z. Y.; Zheng, N. F. J. Am. Chem. Soc. 2009, 131, 13916. doi: 10.1021/ja9059409

    29. [29]

      (29) Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. Angew. Chem. Int. Edit. 2011, 50, 7850. doi: 10.1002/anie.v50.34

    30. [30]

      (30) Cheong, S.; Watt, J.; Ingham, B.; Toney, M. F.; Tilley, R. D. J. Am. Chem. Soc. 2009, 131, 14590. doi: 10.1021/ja9065688

    31. [31]

      (31) Yu, T.; Kim, D. Y.; Zhang, H.; Xia, Y. Angew. Chem. Int. Edit. 2011, 50, 2773. doi: 10.1002/anie.201007859

    32. [32]

      (32) Zhang, H.; Li, W. Y.; Jin, M. S.; Zeng, J. E.; Yu, T. K.; Yang, D. R.; Xia, Y. Nano Lett. 2011, 11, 898. doi: 10.1021/nl104347j

    33. [33]

      (33) Zhang, H.; Xia, X.; Li, W.; Zeng, J.; Dai, Y.; Yang, D.; Xia, Y. Angew. Chem. Int. Edit. 2010, 49, 5296. doi: 10.1002/anie.v49:31

    34. [34]

      (34) Deivaraj, T. C.; Chen, W. X.; Lee, J. Y. J. Mater. Chem. 2003, 13, 2555. doi: 10.1039/b307040a

    35. [35]

      (35) Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Edit. 2009, 48, 60. doi: 10.1002/anie.200802248

    36. [36]

      (36) Zhang, H.; Jin, M. S.; Xia, Y. N. Angew. Chem. Int. Edit. 2012, 51, 7656. doi: 10.1002/anie.201201557

    37. [37]

      (37) Nigg, H. L.; Ford, L. P.; Masel, R. I. J. Vac. Sci. Technol. 1998, A16, 3064.

    38. [38]

      (38) Nigg, H. L.; Masel, R. I. J. Vac. Sci. Technol. 1998, A16, 2581.

    39. [39]

      (39) Jiang, Q.; Jiang, L. H.; Hou, H. Y.; Qi, J.; Wang, S. L.; Sun. G. Q. J. Phys. Chem. C 2010, 114, 19714. doi: 10.1021/jp1039755

    40. [40]

      (40) Park, K. W.; Choi, J. H.; Sung, Y. E. J. Phys. Chem. B. 2003, 107, 24.

    41. [41]

      (41) Sun, Q.; Ren, Z.; Wang, R. M.; Wang, N.; Cao, X. J. Mater. Chem. 2011, 21, 1925. doi: 10.1039/c0jm02563a

    42. [42]

      (42) Xu, J. F.; Liu, X. Y.; Chen, Y.; Zhou, Y. M.; Lu, T. H.; Tang, Y. W. J. Mater. Chem. 2012, 22, 23659. doi: 10.1039/c2jm35649j


  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    6. [6]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    7. [7]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    8. [8]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    9. [9]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    10. [10]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    11. [11]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    12. [12]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    15. [15]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    16. [16]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    17. [17]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    18. [18]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    19. [19]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

Metrics
  • PDF Downloads(1106)
  • Abstract views(924)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return