Citation:
WANG Chun, KANG Jian-Xin, WANG Li-Li, CHEN Ting-Wen, LI Jie, ZHANG Dong-Feng, GUO Lin. Synthesis of Quasi-Concave Pt-Ni Nanoalloys via Overgrowth and Their Catalytic Performance towards Methanol Oxidation[J]. Acta Physico-Chimica Sinica,
;2014, 30(4): 708-714.
doi:
10.3866/PKU.WHXB201401222
-
Quasi-concave Pt-Ni alloy nanostructures were synthesized via a solvothermal method, and were thought to form by epitaxial growth on the 12 vertexes of a cuboctahedron. A simultaneous etchin vergrowth process was proposed to illustrate the growth mechanism. The epitaxial layer was of different composition from the core, as confirmed by high-resolution transmission electron microscopy, selectedarea electron diffraction and powder X-ray diffraction characterizations. The concave structures exhibited high catalytic activity towards methanol oxidation. The mass-normalized catalytic activity of the concave products was ~3 times that of pure Pt nanoparticles synthesized under similar conditions, and 13.6 times that of commercial Pt/C. X-ray photoelectron spectroscopy characterization indicated that the binding energy of the concave structures shifted to lower energy, relative to the pure Pt. The modified electronic structure by introducing Ni was thought to be responsible for the enhanced catalytic activity.
-
Keywords:
-
Overgrowth
, - Quasi-concave,
- Pt-Ni,
- Methanol oxidation reaction,
- Electrocatalysis
-
-
-
-
[1]
(1) Zhang, H.; Jin, M. S.; Xia, Y. N. Chem. Soc. Rev. 2012, 41, 8035. doi: 10.1039/c2cs35173k
-
[2]
(2) Peng, Z. M.; Yang, H. Nano Today 2009, 4, 143. doi: 10.1016/j.nantod.2008.10.010
-
[3]
(3) Sun, S. H.; Zhang, G. X.; Geng, D. S.; Chen, Y. G.; Li, R. Y.; Cai, M.; Sun, X. L. Angew. Chem. Int. Ed. 2011, 50, 422.
-
[4]
(4) Debe1, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115
-
[5]
(5) Gu, J.; Zhang, Y. W.; Tao, F. Chem. Soc. Rev. 2012, 41, 8050. doi: 10.1039/c2cs35184f
-
[6]
(6) Cailuo, N.; Oduro, W.; Kong, A. T. S.; Clifton, L.; Yu, K. M. K.; Thiebaut, B.; Cookson, J.; Bishop, P.; Tsang, S. C. ACS Nano. 2008, 2, 2547. doi: 10.1021/nn800400u
-
[7]
(7) Zhou, X. W.; Gan, Y. L.; Sun, S. G. Acta Phys. -Chim. Sin. 2012, 28, 2071. [周新文,甘亚利, 孙世刚. 物理化学学报, 2012, 28, 2071.] doi: 10.3866/PKU.WHXB201205031
-
[8]
(8) Peng, C.; Cheng, X.; Zhang, Y.; Chen, L.; Fan, Q. B. Acta Phys. -Chim. Sin. 2004, 20, 436. [彭程, 程璇, 张颖, 陈羚, 范钦柏. 物理化学学报, 2004, 20, 436.] doi: 10.3866/PKU.WHXB20040423
-
[9]
(9) Nøskov, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 937. doi: 10.1073/pnas.1006652108
-
[10]
(10) Kelly, T. G.; Chen, J. G.; Chem. Soc. Rev. 2012, 41, 8021. doi: 10.1039/c2cs35165j
-
[11]
(11) Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Nat. Mater. 2008, 7, 333. doi: 10.1038/nmat2156
-
[12]
(12) Nilekar, A. U.; Alayoglu, S.; Eichhorn, B.; Mavrikakis, M. J. Am. Chem. Soc. 2010, 132, 7418. doi: 10.1021/ja101108w
-
[13]
(13) Zhang, L. J.; Xia, D. G.; Wang, Z. Y.; Yuan, R.; Wu, Z. Y. Acta Phys. -Chim. Sin. 2005, 21, 287. [张丽娟, 夏定国, 王振尧, 袁嵘, 吴自玉. 物理化学学报, 2005, 21, 287.] doi: 10.3866/PKU.WHXB20050312
-
[14]
(14) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Science 2007, 315, 493. doi: 10.1126/science.1135941
-
[15]
(15) Mu, R. T.; Fu, Q.; Xu, H.; Zhang, H.; Huang,Y. Y.; Jiang, Z.;Zhang, S.; Tan, D. L.; Bao, X. H. J. Am. Chem. Soc. 2011, 133, 1978 doi: 10.1021/ja109483a
-
[16]
(16) Wu, J. B.; Gross, A.; Yang, H. Nano Lett. 2011, 11, 798. doi: 10.1021/nl104094p
-
[17]
(17) Zhang, J.; Yang, H. Z.; Fang, J. Y.; Zou, S. Z. Nano Lett. 2010, 10, 638. doi: 10.1021/nl903717z
-
[18]
(18) Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Atwan, M. H.; Tessema, M. M. J. Am. Chem. Soc. 2012, 134, 8535. doi: 10.1021/ja300756y
-
[19]
(19) Jiang, Q.; Jiang, L. H.; Hou, H. Y.; Qi, J.; Wang, S. L.; Sun, G. Q. J. Phys. Chem. C 2010, 114, 19714. doi: 10.1021/jp1039755
-
[20]
(20) Huang, X. Q.; Zhu, E. B.; Chen, Y.; Li, Y. J.; Chiu, C. Y.; Xu, Y. X.; Lin, Z. Y.; Duan, X. F.; Huang, Y. Adv. Mater. 2013, 25, 2974. doi: 10.1002/adma.v25.21
-
[21]
(21) Li, J. H.; Zhou, W.; Yao, M.; Guo, L.; Li, Y. M.; Yang, S. H. J. Am. Chem. Soc. 2009, 131, 2959. doi: 10.1021/ja808784s
-
[22]
(22) Berkovitch, N.; Ginzburg, P.; Orenstein, M. Nano Lett. 2010, 10, 1405. doi: 10.1021/nl100222k
-
[23]
(23) Tian, N.; Zhou, Z. Y.; Sun, S. G. J. Phys. Chem. C 2008, 112, 19801. doi: 10.1021/jp804051e
-
[24]
(24) Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. D. J. Am. Chem. Soc. 2010, 132, 268. doi: 10.1021/ja906954f
-
[25]
(25) Xia, X.; Zeng, J.; Mcdearmon, B.; Zheng, Y.; Li, Q.; Xia, Y. Angew. Chem. Int. Ed. 2011, 50, 12542. doi: 10.1002/anie.201105200
-
[26]
(26) Jiang, Q.; Jiang, Z.; Zhang, L.; Lin, H.; Yang, N.; Li, H.; Liu, D.; Xie, Z.; Tian, Z. Nano Res. 2011, 4, 612. doi: 10.1007/s12274-011-0117-x
-
[27]
(27) Wu, H. L.; Chen, C. H.; Huang, M. H. Chem. Mater. 2009, 21, 110. doi: 10.1021/cm802257e
-
[28]
(28) Huang, X. Q.; Tang, S. H.; Zhang, H. H.; Zhou, Z. Y.; Zheng, N. F. J. Am. Chem. Soc. 2009, 131, 13916. doi: 10.1021/ja9059409
-
[29]
(29) Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. Angew. Chem. Int. Edit. 2011, 50, 7850. doi: 10.1002/anie.v50.34
-
[30]
(30) Cheong, S.; Watt, J.; Ingham, B.; Toney, M. F.; Tilley, R. D. J. Am. Chem. Soc. 2009, 131, 14590. doi: 10.1021/ja9065688
-
[31]
(31) Yu, T.; Kim, D. Y.; Zhang, H.; Xia, Y. Angew. Chem. Int. Edit. 2011, 50, 2773. doi: 10.1002/anie.201007859
-
[32]
(32) Zhang, H.; Li, W. Y.; Jin, M. S.; Zeng, J. E.; Yu, T. K.; Yang, D. R.; Xia, Y. Nano Lett. 2011, 11, 898. doi: 10.1021/nl104347j
-
[33]
(33) Zhang, H.; Xia, X.; Li, W.; Zeng, J.; Dai, Y.; Yang, D.; Xia, Y. Angew. Chem. Int. Edit. 2010, 49, 5296. doi: 10.1002/anie.v49:31
-
[34]
(34) Deivaraj, T. C.; Chen, W. X.; Lee, J. Y. J. Mater. Chem. 2003, 13, 2555. doi: 10.1039/b307040a
-
[35]
(35) Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Edit. 2009, 48, 60. doi: 10.1002/anie.200802248
-
[36]
(36) Zhang, H.; Jin, M. S.; Xia, Y. N. Angew. Chem. Int. Edit. 2012, 51, 7656. doi: 10.1002/anie.201201557
-
[37]
(37) Nigg, H. L.; Ford, L. P.; Masel, R. I. J. Vac. Sci. Technol. 1998, A16, 3064.
-
[38]
(38) Nigg, H. L.; Masel, R. I. J. Vac. Sci. Technol. 1998, A16, 2581.
-
[39]
(39) Jiang, Q.; Jiang, L. H.; Hou, H. Y.; Qi, J.; Wang, S. L.; Sun. G. Q. J. Phys. Chem. C 2010, 114, 19714. doi: 10.1021/jp1039755
-
[40]
(40) Park, K. W.; Choi, J. H.; Sung, Y. E. J. Phys. Chem. B. 2003, 107, 24.
-
[41]
(41) Sun, Q.; Ren, Z.; Wang, R. M.; Wang, N.; Cao, X. J. Mater. Chem. 2011, 21, 1925. doi: 10.1039/c0jm02563a
-
[42]
(42) Xu, J. F.; Liu, X. Y.; Chen, Y.; Zhou, Y. M.; Lu, T. H.; Tang, Y. W. J. Mater. Chem. 2012, 22, 23659. doi: 10.1039/c2jm35649j
-
[1]
-
-
-
[1]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[2]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[3]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[4]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[5]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[6]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[7]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[8]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[9]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[10]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[11]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[12]
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
-
[13]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[14]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[15]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[16]
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
-
[17]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[18]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[19]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[20]
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
-
[1]
Metrics
- PDF Downloads(1106)
- Abstract views(905)
- HTML views(48)