Citation: FU Rong, LU Tian, CHEN Fei-Wu. Comparing Methods for Predicting the Reactive Site of Electrophilic Substitution[J]. Acta Physico-Chimica Sinica, ;2014, 30(4): 628-639. doi: 10.3866/PKU.WHXB201401211 shu

Comparing Methods for Predicting the Reactive Site of Electrophilic Substitution

  • Received Date: 18 November 2013
    Available Online: 21 January 2014

    Fund Project:

  • Predicting the reactivity of electrophilic substitution at different sites is of theoretical and practical significance, and many prediction methods based on the electronic structure of reactants have been proposed. We compared the reliability of 14 prediction methods, using 14 monosubstituted and 8 disubstituted benzenes as test sets. Methods reflecting local electronic softness, such as the Fukui function and average local ionization energy, are well-suited to monosubstituted benzenes with ortho-para directing groups and disubstituted benzenes. However, these methods often fail for systems containing a single meta directing group. Methods reflecting electrostatic effects perform worse overall than those reflecting local softness, but are better suited to systems containing a single meta directing group. Dual descriptor is the most overall robust method, and can be regarded as a universal prediction method.

  • 加载中
    1. [1]

      (1) Koleva, G.; Galabov, B.; Kong, J.; Schaefer, H. F.; Schleyer, P. v. R. J. Am. Chem. Soc. 2011, 133, 19094. doi: 10.1021/ja201866h

    2. [2]

      (2) Kong, J.; Galabov, B.; Koleva, G.; Zou, J.-J.; Schaefer, H. F.; Schleyer, P. v. R.Angew. Chem. Int. Edit. 2011, 50, 6809. doi: 10.1002/anie.201101852

    3. [3]

      (3) Esteves, P. M.; de M. Carneiro, J. W.; Cardoso, S. P.; Barbosa, A. G. H.; Laali,K . K.; Rasul, G.; Prakash, G. K. S.; Olah, G. A. J. Am. Chem. Soc. 2003, 125, 4836. doi: 10.1021/ja021307w

    4. [4]

      (4) Hadzic, M.; Braïda, B.; Volatron, F. Org. Lett. 2011, 13, 1960. doi: 10.1021/ol200327s

    5. [5]

      (5) Xing, Q.; Xu, R.; Zhou, Z.; Pei, W. Basic Organic Chemistry, 2nd ed.;H igher Education Press: Beijing, 1993. [邢其毅, 徐瑞秋, 周政, 裴基础. 基础有机化学, 第二版; 北京: 高等教育出版社, 1993]

    6. [6]

      (6) Marx, D.; Hutter, J. Ab Initio Molecular Dynamics-Basic Theory and Advanced Methods; Cambridge University Press: Cambridge, 2009.

    7. [7]

      (7) Jensen, F. Introduction to Computational Chemistry, 2nd ed.; John Wiley &S ons: West Sussex, 2007; pp 487-492.

    8. [8]

      (8) Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049. doi: 10.1021/ja00326a036

    9. [9]

      (9) Morell, C.; Grand, A.; Toro-Labbé, A. J. Phys. Chem. A 2004, 109, 205.

    10. [10]

      (10) Murray, J. S.; Politzer, P. Electrostatic Potentials: Chemical Applications. InEncyclopedia of Computational Chemistry; Schleyer, P. v. R. Ed.; John Wiley & Sons:W est Sussex, 1998; Vol. 2, pp 912-920.

    11. [11]

      (11) Lu, T.; Chen, F. W.Acta Phys. -Chim. Sin. 2012, 28, 1. [卢天, 陈飞武.物理化学学报, 2012, 28, 1.] doi: 10.3866/PKU.WHXB2012281

    12. [12]

      (12) Politzer, P.; Murray, J.; Bulat, F. J. Mol. Model. 2010, 16, 1731. doi: 10.1007/s00894-010-0709-5

    13. [13]

      (13) Murray, J. S.; Politzer, P. WIREs: Comp. Mol. Sci. 2011, 1, 153. doi: 10.1002/wcms.19

    14. [14]

      (14) Politzer, P.; Murray, J. S. Molecular Electrostatic Potentials and ChemicalR eactivity. In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B.E ds.; John Wiley & Sons: New York, 1991; Vol. 2, pp 273-312.

    15. [15]

      (15) Politzer, P.; Murray, J. S. The Electrostatic Potential as a Guide to Molecular Interactive Behavior. In Chemical Reactivity Theory: A Density Functional View;Chattaraj, P. K. Ed.; CRC Press: Boca Raton, 2009.

    16. [16]

      (16) Geerlings, P.; Langenaeker, W.; Proft, F. D.; Baeten, A. Molecular Electrostatic Potentials vs DFT Descriptors of Reactivity. In Molecular Electrostatic Potentials: Concepts and Applications; Murray, J. S., Sen, K. Eds.; Elsevier Science B.V: Amsterdam, 1996.

    17. [17]

      (17) Politzer, P.; Murray, J. S.; Concha, M. C. Int. J. Quantum Chem. 2002, 88,19.

    18. [18]

      (18) Politzer, P.; Laurence, P. R.; Jayasuriya, K. Environ. Health Perspect. 1985,61, 191. doi: 10.1289/ehp.8561191

    19. [19]

      (19) Sjoberg, P.; Politzer, P. J. Phys. Chem. 1990, 94, 3959. doi: 10.1021/j100373a017

    20. [20]

      (20) Bader, R. F. W.; Carroll, M. T.; Cheeseman, J. R.; Chang, C. J. Am. Chem. Soc. 1987, 109, 7968. doi: 10.1021/ja00260a006

    21. [21]

      (21) Lu, T.; Chen, F. W. J. Mol. Graph. Model. 2012, 38, 314. doi: 10.1016/j.jmgm.2012.07.004

    22. [22]

      (22) Murray, J. S.; Peralta-Inga, Z.; Politzer, P.; Ekanayake, K.; LeBreton, P. Int. J. Quantum Chem. 2001, 83, 245.

    23. [23]

      (23) Sjoberg, P.; Murray, J. S.; Brinck, T.; Politzer, P. Can. J. Chem. 1990, 68,1 440. doi: 10.1139/v90-001

    24. [24]

      (24) Politzer, P.; Murray, J. S. The Average Local Ionization Energy: Concepts and Applications. In Theoretical Aspects of Chemical Reactivity; Toro-Labbé, A. Ed.;Elsevier: Amsterdam, 2007; pp 119-137.

    25. [25]

      (25) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833. doi: 10.1063/1.1740588

    26. [26]

      (26) Breneman, C. M.; Wiberg, K. B. J. Comput. Chem. 1990, 11, 361.

    27. [27]

      (27) Weinhold, F. Natural Bond Orbital Methods. In Encyclopedia of Computational Chemistry; Schleyer, P. v. R. Ed.; John Wiley & Sons: West Sussex,1998; Vol.2, pp 1792-1811.

    28. [28]

      (28) Hirshfeld, F. L. Theor. Chem. Acc. 1977, 44, 129.

    29. [29]

      (29) Lu, T.; Chen, F. W. J. Theor. Comp. Chem. 2012, 11, 163. doi: 10.1142/S0219633612500113

    30. [30]

      (30) Bader, F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: New York, 1994.

    31. [31]

      (31) Fukui, K. Theory of Orientation and Stereoselection. In Orientation and Stereoselection; Springer: Berlin, 1970; Vol. 15/1, pp 1-85.

    32. [32]

      (32) Lu, T.; Chen, F. W. Acta Chim. Sin. 2011, 69, 2393. [卢天, 陈飞武. 化学学报, 2011, 69, 2393.]

    33. [33]

      (33) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报,2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332

    34. [34]

      (34) Mohamed Imran, P. K.; Subramani, K. Acta Phys. -Chim. Sin. 2009, 25, 2357.[ Mohamed Imran, P. K.; Subramani, K. 物理化学学报, 2009, 25, 2357.] doi: 10.3866/PKU.WHXB20091131

    35. [35]

      (35) Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708. doi: 10.1021/ja00279a008

    36. [36]

      (36) Jin, J. L.; Li, H. B.; Lu, T.; Duan, Y. A.; Geng, Y.; Wu, Y.; Su, Z. M. J. Mol. Model. 2013, 19, 3437. doi: 10.1007/s00894-013-1845-5

    37. [37]

      (37) Manzetti, S.; Lu, T. J. Phys. Org. Chem. 2013, 26, 473. doi: 10.1002/poc.v26.6

    38. [38]

      (38) Oláh, J.; Van Alsenoy, C.; Sannigrahi, A. B. J. Phys. Chem. A 2002, 106,3 885.

    39. [39]

      (39) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533. doi: 10.1021/ja00905a001

    40. [40]

      (40) Yang, W.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 1985, 82, 6723. doi: 10.1073/pnas.82.20.6723

    41. [41]

      (41) Roy, R. K.; Krishnamurti, S.; Geerlings, P.; Pal, S. J. Phys. Chem. A 1998,102, 3746. doi: 10.1021/jp973450v

    42. [42]

      (42) Domin , L. R.; Perez, P.; Saez, J. A. RSC Adv. 2013, 3, 1486. doi: 10.1039/c2ra22886f

    43. [43]

      (43) Fuster, F.; Sevin, A.; Silvi, B. J. Phys. Chem. A 2000, 104, 852. doi: 10.1021/jp992783k

    44. [44]

      (44) Lu, T.; Chen, F. W. Acta Phys. -Chim. Sin. 2011, 27, 2786. [卢天, 陈飞武 . 物理化学学报, 2011, 27, 2786.] doi: 10.3866/PKU.WHXB20112786

    45. [45]

      (45) MacDougall, P. J.; Henze, C. E. Theor. Chem. Acc. 2001, 105, 345. doi: 10.1007/s002140000225

    46. [46]

      (46) Bader, R. F. W.; Chang, C. J. Phys. Chem. 1989, 93, 2946. doi: 10.1021/j100345a020

    47. [47]

      (47) Koleva, G.; Galabov, B.; Wu, J. I.; Schaefer III, H. F.; Schleyer, P. v. R. J. Am. Chem. Soc. 2009, 131, 14722.

    48. [48]

      (48) Zhou, Z.; Parr, R. G. J. Am. Chem. Soc. 1990, 112, 5720. doi: 10.1021/ja00171a007

    49. [49]

      (49) Ehresmann, B.; Martin, B.; Horn, A. C.; Clark, T. J. Mol. Model. 2003, 9,342.

    50. [50]

      (50) Bruice, P. Y. Organic Chemistry, 4th ed.; Prentice Hall: New Jersey, 2004.

    51. [51]

      (51) McMurry, J. Organic Chemistry, 7th ed.; Thomson Higher Education:B elmont, 2008.

    52. [52]

      (52) Morrison, R. T.; Boyd, R. N. Organic Chemistry, 6th ed.; Prentice Hall, Inc.:New Jersey, 1992.

    53. [53]

      (53) Wang, J.T; Hu, Q.M; Zhang, B. Z.; Wang, Y.M. Organic Chemistry, 2nd ed.; NanKai University Press: Tianjin, 1993. [王积涛, 胡青眉, 张宝申, 王永梅. 有机化学,第二版; 天津: 南开大学出版社, 1993]

    54. [54]

      (54) Geerlings, P.; Langenaeker, W.; Proft, F. D.; Baeten, A. Molecular Electrostatic Potentials vs. DFT Descriptors of Reactivity. In Molecular Electrostatic Potentials: Concepts and Applications; Murray, J. S., Sen, K. Eds.; Elsevier Science:A msterdam, 1996; pp 587-617.

    55. [55]

      (55) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, RevisionB .02; Gaussian Inc.: Wallingford, CT, 2003.

    56. [56]

      (56) Becke, A. D. J. Chem. Phys. 1993, 98, 1372. doi: 10.1063/1.464304

    57. [57]

      (57) Hariharan, P. C.; Pople, J. A. Theor. Chem. Acc. 1973, 28, 213.

    58. [58]

      (58) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265. doi: 10.1063/1.447079

    59. [59]

      (59) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. doi: 10.1063/1.1677527

    60. [60]

      (60) Multiwfn http://Multiwfn.codeplex.com (accessed Oct 10, 2013).

    61. [61]

      (61) Lu, T.; Chen, F. W. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.v33.5


  • 加载中
    1. [1]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    2. [2]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    3. [3]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    6. [6]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    7. [7]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    8. [8]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    9. [9]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    10. [10]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    11. [11]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    12. [12]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    13. [13]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    14. [14]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    15. [15]

      Jin Jia Shangda Jiang . Is the z Axis Special in Atomic Structure?. University Chemistry, 2024, 39(6): 400-404. doi: 10.12461/PKU.DXHX202403091

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    19. [19]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    20. [20]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

Metrics
  • PDF Downloads(1466)
  • Abstract views(1646)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return