Citation:
PEI Juan, HAO Yan-Zhong, SUN Bao, LI Ying-Pin, FAN Long-Xue, SUN Shuo, WANG Shang-Xin. Heterojunction Interface Modification and Its Effect on the Photovoltaic Performance of Hybrid Solar Cells[J]. Acta Physico-Chimica Sinica,
;2014, 30(3): 397-407.
doi:
10.3866/PKU.WHXB201401202
-
Much attention has been focused on hybrid solar cells because of their low cost and high theoretical efficiencies. The photoactive layer of hybrid solar cells is composed of inorganic semiconductor and organic conjugated polymer. Excitons (electron-hole pairs) are formed upon the absorption of photons by the polymer. The excitons diffuse to the heterojunction interface between the organic donor and inorganic acceptor, and then dissociate to free electrons and holes. These electrons and holes then transfer to the inorganic and organic materials to realize charge separation and transportation. The exciton dissociation efficiency at the organic-inorganic heterojunction interface influences the photovoltaic performance of the cell. A small contact area and poor chemical compatibility between the organic and inorganic materials decrease the exciton dissociation efficiency, and thus the overall cell efficiency. This can be overcome by modifying the heterojunction interface. This paper reviews available interfacial modification methods, their function and significance, and explores prospects for the future development and application of hybrid solar cells.
-
-
-
[1]
(1) Green, M. A. Physlca E 2002, 14, 11. doi: 10.1016/S1386-9477(02)00354-5
-
[2]
(2) Cohen, M. J.; Harris, J. S. Appl. Phys. Lett. 1978, 33 (9), 812. doi: 10.1063/1.90537
-
[3]
(3) Weinberger, B. R.; Gau, S. C.; Kiss, Z. Appl. Phys. Lett. 1981, 38 (7), 555. doi: 10.1063/1.92410
-
[4]
(4) Tang, C.W. Appl. Phys. Lett. 1986, 48 (2), 183. doi: 10.1063/1.96937
-
[5]
(5) Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.;Wudl, F. Science 1992, 258, 1474. doi: 10.1126/science.258.5087.1474
-
[6]
(6) Li, G.; Zhu, R.; Yang, Y. Nature Photon. 2012, 6, 153. doi: 10.1038/nphoton.2012.11
-
[7]
(7) Brabec, C. J.; wrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S.; Williams, S. P. Adv. Mater. 2010, 22 (34), 3839. doi: 10.1002/adma.200903697
-
[8]
(8) Chen, J.; Song, J. L.; Sun, X.W.; Deng,W. Q.; Jiang, C. Y.; Lei, W.; Huang, J. H.; Liu, R. S. Appl. Phys. Lett. 2009, 94 (15), 153115. doi: 10.1063/1.3117221
-
[9]
(9) Sun, B. Q.; Marx, E.; Greenham, N. C. Nano Lett. 2003, 3 (7), 961. doi: 10.1021/nl0342895
-
[10]
(10) Sun, B. Q.; Greenham, N. C. Phys. Chem. Chem. Phys. 2006, 8 (30), 3557. doi: 10.1039/b604734n
-
[11]
(11) Hao, Y. Z.; Ma, J. X.; Sun, B.; Li, Y. P.; Ren, J. J. Acta Chimica Sinica 2010, 68 (1), 33. [郝彦忠, 马洁霞, 孙宝, 李英品, 任聚杰. 化学学报, 2010, 68 (1), 33.]
-
[12]
(12) Jiang, X. X.; Chen, F.; Qiu,W. M.; Yan, Q. X.; Nan, Y. X.; Xu, H.; Yang, L. G.; Chen, H. Z. Sol. Energy Mater. Sol. Cells 2010, 94 (12), 2223. doi: 10.1016/j.solmat.2010.07.016
-
[13]
(13) Wang, L.; Liu, Y. S.; Jiang, X.; Qin, D. H.; Cao, Y. J. Phys. Chem. C 2007, 111 (26), 9538. doi: 10.1021/jp0715777
-
[14]
(14) Guo, Y. B.; Li, Y. L.; Xu, J. J.; Liu, X. F.; Xu, J. L.; Lv, J.; Huang, C. S.; Zhu, M.; Cui, S.; Jiang, L.; Liu, H. B.;Wang, S. J. Phys. Chem. C 2008, 112 (22), 8223. doi: 10.1021/jp800456c
-
[15]
(15) Bouclé, J.; Chyla, S.; Shaffer, M. S. P.; Durrant, J. R.; Bradley, D. D. C.; Nelson, J. Adv. Funct. Mater. 2008, 18 (4), 622.
-
[16]
(16) Xu, T. T.; Qiao, Q. Q. Energy Environ. Sci. 2011, 4 (8), 2700. doi: 10.1039/c0ee00632g
-
[17]
(17) Lira-Cantu, M.; Krebs, F. C. Sol. Energy Mater. Sol. Cells 2006, 90 (14), 2076. doi: 10.1016/j.solmat.2006.02.007
-
[18]
(18) Krebs, F. C. Sol. Energy Mater. Sol. Cells 2008, 92 (7), 715. doi: 10.1016/j.solmat.2008.01.013
-
[19]
(19) Monson, T. C.; Lloyd, M. T.; Olson, D. C.; Lee, Y. J.; Hsu, J.W. P. Adv. Mater. 2008, 20 (24), 4755. doi: 10.1002/adma.v20:24
-
[20]
(20) Oosterhout, S. D.;Wienk, M. M.; Bavel, S. S.; Thiedmann, R.; Koster, L. J. A.; Gilot, J.; Loos, J.; Schmidt, V.; Janssen, R. A. J. Nat. Mater. 2009, 8, 818. doi: 10.1038/nmat2533
-
[21]
(21) Moet, D. J. D.; Koster, L. J. A.; Boer, B. D.; Blom, P.W. M. Chem. Mater. 2007, 19 (24), 5856. doi: 10.1021/cm070555u
-
[22]
(22) Yu, G.; Gao, J.; Hummelen, J. C.;Wudl, F.; Heeger, A. J. Science 1995, 270, 1789. doi: 10.1126/science.270.5243.1789
-
[23]
(23) Zhou, Y. F.; Eck, M.; Krüger, M. Energy Environ. Sci. 2010, 3 (12), 1851. doi: 10.1039/c0ee00143k
-
[24]
(24) Skompska, M. Synthetic Metals 2010, 160 (1-2), 1. doi: 10.1016/j.synthmet.2009.10.031
-
[25]
(25) Yang, J. M.; Peng, Y. L.; Tian, Q.W.; Chen, Z. G. Modern Chemical Industry 2011, 31 (10), 24. [杨健茂, 彭彦玲, 田启威, 陈志钢. 现代化工, 2011, 31 (10), 24.]
-
[26]
(26) Peng, X. M. Preparation of Polythiophene/ZnO Nanocrystal Bulk Heterojunction Hybrids for Photo-Electricity Devices. Master Dissertation, Nanchang University, Nanchang, 2010. [彭小明. 基于光电器件活性层聚噻吩/ZnO 杂化体系异质结的制备与研究[M]. 南昌: 南昌大学, 2010.]
-
[27]
(27) Saunders, B. R. Journal of Colloid and Interface Science 2012, 369 (1), 1. doi: 10.1016/j.jcis.2011.12.016
-
[28]
(28) Wright, M.; Uddin, A. Sol. Energy Mater. Sol. Cells 2012, 107, 87. doi: 10.1016/j.solmat.2012.07.006
-
[29]
(29) Lin, Y. Y.; Chu, T. H.; Li, S. S.; Chuang, C. H.; Chang, C. H.; Su,W. F.; Chang, C. P.; Chu, M.W.; Chen, C.W. J. Am. Chem. Soc. 2009, 131 (10), 3644. doi: 10.1021/ja8079143
-
[30]
(30) Weickert, J.; Auras, F.; Bein, T.; Schmidt-Mende, L. J. Phys. Chem. C 2011, 115 (30), 15081. doi: 10.1021/jp203600z
-
[31]
(31) h, C.; Scully, S. R.; McGehee, M. D. J. Appl. Phys. 2007, 101 (11), 114503. doi: 10.1063/1.2737977
-
[32]
(32) Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11 (5), 374
-
[33]
(33) Garza, L.; Saponjic, Z. V.; Dimitrijevic, N. M.; Thurnauer, M. C.; Rajh, T. J. Phys. Chem. B 2006, 110 (2), 680. doi: 10.1021/jp054128k
-
[34]
(34) Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2010, 110, 389. doi: 10.1021/cr900137k
-
[35]
(35) Yin, Y. D.; Alivisatos, A. P. Nature 2005, 437, 644.
-
[36]
(36) Greenham, N. C.; Peng, X. G.; Alivisatos, A. P. Phys. Rev. B 1996, 54 (24), 17628. doi: 10.1103/PhysRevB.54.17628
-
[37]
(37) Seo, J.; Kim,W. J.; Kim, S. J.; Lee, K. S.; Cartwright, A. N.; Prasad, P. N. Appl. Phys. Lett. 2009, 94 (13), 133302. doi: 10.1063/1.3110969
-
[38]
(38) Liu, J. C.;Wang,W. L.; Yu, H. Z.;Wu, Z. L.; Peng, J. B.; Cao, Y. Sol. Energy Mater. Sol. Cells 2008, 92 (11), 1403. doi: 10.1016/j.solmat.2008.05.017
-
[39]
(39) Park, I.; Lim, Y.; Noh, S.; Lee, D.; Meister, M.; Amsden, J. J.; Laquai, F.; Lee, C.; Yoon, D. Y. Organic Electronics 2011, 12, 424. doi: 10.1016/j.orgel.2010.12.002
-
[40]
(40) Celik, D.; Krueger, M.; Veit, C.; Schleiermacher, H. F.; Zimmermann, B.; Allard, S.; Dumsch, I.; Scherf, U.; Rauscher, F.; Niyamakom, P. Sol. Energy Mater. Sol. Cells 2012, 98, 433. doi: 10.1016/j.solmat.2011.11.049
-
[41]
(41) Freitas, F. S.; Clifford, J. N.; Palomares, E.; Noqueira, A. F. Phys. Chem. Chem. Phys. 2012, 14, 11990. doi: 10.1039/c2cp41706e
-
[42]
(42) Canesi, E. V.; Binda, M.; Abate, A.; Guarnera, S.; Moretti, L.; D'Innocenzo, V.; Kumar, R. S. S.; Bertarelli, C.; Abrusci, A.; Snaith, H.; Calloni, A.; Brambilla, A.; Ciccacci, F.; Aghion, S.; Moia, F.; Ferragut, R.; Melis, C.; Malloci, G.; Mattoni, A.; Lanzani, G.; Petrozza, A. Energy Environ. Sci. 2012, 5 (10), 9068. doi: 10.1039/c2ee22212d
-
[43]
(43) Huynh,W. U.; Dittmer, J. J.; Teclemariam, N.; Milliron, D. J.; Alivisatos, A. P.; Barnham,W. J. Phys. Rev. B 2003, 67 (11), 115326. doi: 10.1103/PhysRevB.67.115326
-
[44]
(44) Wang, Z. J.; Qu, S. C.; Zeng, X. B.; Liu, J. P.; Zhang, C. S.; Tan, F. R.; Jin, L.;Wang, Z. G. Applied Surface Science 2008, 255 (5), 1916. doi: 10.1016/j.apsusc.2008.06.138
-
[45]
(45) Huynh,W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425. doi: 10.1126/science.1069156
-
[46]
(46) Cheng, C.W.; Fan, H. J. Nano Today 2012, 7 (4), 327. doi: 10.1016/j.nantod.2012.06.002
-
[47]
(47) Dayal, S.; Kopidakis, N.; Olson, D. C.; Ginley, D. S.; Rumbles, G. Nano Lett. 2010, 10 (1), 239. doi: 10.1021/nl903406s
-
[48]
(48) Gur, I.; Fromer, N. A.; Chen, C. P.; Kanaras, A. G.; Alivisatos, A. P. Nano Lett. 2007, 7 (2), 409. doi: 10.1021/nl062660t
-
[49]
(49) Greene, L. E.; Law, M.; Yuhas, B. D.; Yang, P. D. J. Phys. Chem. C 2007, 111 (50), 18451. doi: 10.1021/jp077593l
-
[50]
(50) Piris, J.; Kopidakis, N.; Olson, D. C.; Shaheen, S. E.; Ginley, D. S.; Rumbles, G. Adv. Funct.Mater. 2007, 17 (18), 3849.
-
[51]
(51) Coakley, K. M.; Srinivasan, B. S.; Ziebarth, J. M.; h, C.; Liu, Y.; McGehee, D. Adv. Funct. Mater. 2005, 15 (12), 1927.
-
[52]
(52) Olson, D. C.; Piris, J.; Collins, R. T.; Shaheen, S. E.; Ginley, D. S. Thin Solid Films 2006, 496 (1), 26. doi: 10.1016/j.tsf.2005.08.179
-
[53]
(53) Xi, D. J.; Zhang, H.; Furst, S.; Chen, B.; Pei, Q. B. J. Phys. Chem. C 2008, 112 (49), 19765. doi: 10.1021/jp807868j
-
[54]
(54) Takanezawa, K.; Hirota, K.;Wei, Q. S.; Tajima, K.; Hashimoto, K. J. Phys. Chem. C 2007, 111 (19), 7218. doi: 10.1021/jp071418n
-
[55]
(55) Feng, Z. F.; Zhang, Q. B.; Lin, L. L.; Guo, H. H.; Zhou, J. Z.; Lin, Z. H. Chem. Mater. 2010, 22 (9), 2705. doi: 10.1021/cm901703d
-
[56]
(56) Janáky, C.; Bencsik, G.; Rácz, Á.; Visy, C.; Tacconi, N. R.; Chanmanee,W.; Rajeshwar, K. Langmuir 2010, 26 (16), 13697. doi: 10.1021/la101300n
-
[57]
(57) Yodyingyong, S.; Zhou, X. Y.; Zhang, Q. F.; Triampo, D.; Xi, J. T.; Park, K.; Limketkai, B.; Cao, G. Z. J. Phys. Chem. C 2010, 114 (49), 21851. doi: 10.1021/jp1077888
-
[58]
(58) Hao, Y. Z.; Pei, J.;Wei, Y.; Cao, Y. H.; Jiao, S. H.; Zhu, F.; Li, J. J.; Xu, D. S. J. Phys. Chem. C 2010, 114 (18), 8622. doi: 10.1021/jp911263d
-
[59]
(59) Sun, B.; Hao, Y. Z.; Guo, F.; Cao, Y. H.; Zhang, Y. H.; Li, Y. P.; Xu, D. S. J. Phys. Chem. C 2012, 116 (1), 1395. doi: 10.1021/jp206067m
-
[60]
(60) Hao, Y. Z.; Cao, Y. H.; Sun, B.; Li, Y. P.; Zhang, Y. H.; Xu, D. S. Sol. Energy Mater. Sol. Cells 2012, 101, 107. doi: 10.1016/j.solmat.2012.02.032
-
[61]
(61) Yang, X. F.; Zhuang, J. L.; Li, X. Y.; Chen, D. H.; Ouyang, G. F.; Mao, Z. Q.; Han, Y. X.; He, Z. H.; Liang, C. L.;Wu, M. M.; Yu, J. C. ACS Nano 2009, 3 (5), 1212. doi: 10.1021/nn900084e
-
[62]
(62) Ko, S. H.; Lee, D.; Kang, H.W.; Nam, K. H.; Yeo, J. Y.; Hong, S. J.; Gri ropoulos, C. P.; Sung, H. J. Nano Lett. 2011, 11 (2), 666. doi: 10.1021/nl1037962
-
[63]
(63) Pei, J.; Peng, S. J.; Shi, J. F.; Liang, Y. L.; Tao, Z. L.; Liang, J.; Chen, J. J. Power Sources 2009, 187 (2), 620. doi: 10.1016/j. jpowsour.2008.11.028
-
[64]
(64) Pei, J.; Liang, M.; Chen, J.; Tao, Z. L.; Xu,W. Acta Phys. -Chim. Sin. 2008, 24 (11), 1950. [裴娟, 梁茂, 陈军, 陶占良, 许炜. 物理化学学报, 2008, 24 (11), 1950.] doi: 10.1016/S1872-1508(08)60077-7
-
[65]
(65) Horiuchi, T.; Miura, H.; Uchida, S. Chem. Commun. 2003, 3036.
-
[66]
(66) Zhang,W.; Zhu, R.; Liu, B.; Ramakrishna, S. Appl. Energy 2012, 90 (1), 305. doi: 10.1016/j.apenergy.2011.03.037
-
[67]
(67) Zhu, R.; Jiang, C. Y.; Liu, B.; Ramakrishna, S. Adv. Mater. 2009, 21 (9), 994. doi: 10.1002/adma.v21:9
-
[68]
(68) Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte, P.; Nazeeruddin, M. K.; Péchy, P.; Takata, M.; Miura, H.; Uchida, S.; Grätzel, M. Adv. Mater. 2006, 18 (9), 1202.
-
[69]
(69) Liao,W. P.; Hsu, S. C.; Lin,W. H.;Wu, J. J. J. Phys. Chem. C 2012, 116 (30), 15938. doi: 10.1021/jp304915x
-
[70]
(70) Wang, M. Q.;Wang, X. G. Sol. Energy Mater. Sol. Cells 2008, 92 (7), 766. doi: 10.1016/j.solmat.2008.01.015
-
[71]
(71) AbdulAlmohsin, S.; Cui, J. B. J. Phys. Chem. C 2012, 116 (17), 9433. doi: 10.1021/jp301881s
-
[72]
(72) Liu, J. S.; Tanaka, T.; Sivula, K.; Alivisatos, A. P.; Fréchet, J. M. J. J. Am. Chem. Soc. 2004, 126 (21), 6550. doi: 10.1021/ja0489184
-
[73]
(73) Briseno, A. L.; Holcombe, T.W.; Boukai, A. I.; Garnett, E. C.; Shelton, S.W.; Fréchet, J. J. M.; Yang, P. D. Nano Lett. 2010, 10 (1), 334. doi: 10.1021/nl9036752
-
[74]
(74) Mawyin, J.; Shupyk, I.;Wang, M. Q.; Poize, G.; Atienzar, P.; Ishwara, T.; Durrant, J. R.; Nelson, J.; Kanehira, D.; Yoshimoto, N.; Martini, C.; Shilova, E.; Secondo, P.; Brisset, H.; Fages, F.; Ackermann, J. J. Phys. Chem. C 2011, 115 (21), 10881. doi: 10.1021/jp112369t
-
[75]
(75) Querner, C.; Benedetto, A.; Demadrille, R.; Rannou, P.; Reiss, P. Chem. Mater. 2006, 18 (20), 4817. doi: 10.1021/cm061105p
-
[76]
(76) Bhongale, C. J.; Thelakkat, M. Sol. Energy Mater. Sol. Cells 2010, 94 (5), 817. doi: 10.1016/j.solmat.2009.12.030
-
[77]
(77) Zhang, Q. L.; Russell, T. P.; Emrick, T. Chem. Mater. 2007, 19 (15), 3712. doi: 10.1021/cm070603a
-
[1]
-
-
-
[1]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[2]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[3]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[4]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
-
[5]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
-
[6]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[7]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[8]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[9]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[10]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[11]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[12]
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047
-
[13]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[14]
Jiandong Liu , Zhijia Zhang , Mikhail Kamenskii , Filipp Volkov , Svetlana Eliseeva , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048
-
[15]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[16]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[17]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[18]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[19]
Yanhui Sun , Junmin Nan , Guozheng Ma , Xiaoxi Zuo , Guoliang Li , Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023
-
[20]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[1]
Metrics
- PDF Downloads(947)
- Abstract views(1397)
- HTML views(88)