Citation: AI Yi-Xin, LU Jun-Rui, XIN Chun-Wei, MU Jiang-Bei, YANG Xu-Yun, ZHANG He. Simulated Mechanism of Triclosan in Modulating the Active Site and Loop of FabI by Computer[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 559-568. doi: 10.3866/PKU.WHXB201401132 shu

Simulated Mechanism of Triclosan in Modulating the Active Site and Loop of FabI by Computer

  • Received Date: 21 October 2013
    Available Online: 13 January 2014

    Fund Project: 国家自然科学基金(21176194,20976135)资助项目 (21176194,20976135)

  • The impact of conformation of the active site loop, secondary structure, active site volume, and substrate (unsaturated acyl chain) channel as a function of simulation time caused by the FabI (enoyl-ACP reductase) inhibitor of triclosan were studied by molecular dynamics simulations, define secondary structure of proteins (DSSP), and pocket volume measurer (POVME). Triclosan restricted the changes of the active site and substrate channel of the FabI-NAD+-TCL (NAD+: nicotinamide adenine dinucleotide, TCL: triclosan) ternary complex. The active site loop formed an ordered, closed, and stable conformation, and was commonly associated with a helical structure in front of the active site. This made the active site volume change little, the volume distribution concentrated and the substrate channel size narrowed and almost closed. However, the active site loop was disordered, open, and flexible in the FabI-NAD+ binary complex. The changes of active site volume and distribution in the binary system were larger and more disperse than those in the ternary system. The substrate channel size in the binary system widened and became unstable. Triclosan induced residues of the active site and active site loop of FabI and made the ternary system more closed, which blocked the unsaturated acyl chains from getting into the catalytic center of FabI through the substrate channel, interrupted the reduction reaction and the elongation cycle of fatty acid synthesis. These results aid our understanding of potent inhibitory activity of triclosan and related compounds.

  • 加载中
    1. [1]

      (1) Tam, V. H.; Rogers, C. A.; Chang, K. T.;Weston, J. S.; Caeiro, J. P.; Garey, K.W. Antimicrob. Agents Chemother. 2010, 54 (9), 3717. doi: 10.1128/AAC.00207-10

    2. [2]

      (2) Molton, J. S.; Tambyah, P. A.; Ang, B. S.; Ling, M. L.; Fisher, D. A. Clin. Infect. Dis. 2013, 56 (9), 1310. doi: 10.1093/cid/cit020

    3. [3]

      (3) Norrby, S. R.; Nord, C. E.; Finch, R. Lancet Infect. Dis. 2005, 5 (2), 115.

    4. [4]

      (4) Jiang, H. A New Perspective of Cracking the Codes of Antibiotic Resistance [N]. People's Daily, 12th Section, January 22, 2013. [姜泓. 破解抗生素耐药性有了新视角[N]. 人民日报, 12 版, 2013 年1 月22 日.]

    5. [5]

      (5) Raman, K.; Raja palan, P.; Chandra, N. PLoS Comput. Biol. 2005, 1 (5), e46.

    6. [6]

      (6) Wen, L.; Chmielowski, J. N.; Bohn, K. C.; Huang, J. K.; Timsina, Y. N.; Kodali, P.; Pathak, A. K. Protein Expr. Purif. 2009, 65 (1), 83. doi: 10.1016/j.pep.2008.11.011

    7. [7]

      (7) Payne, D. J.;Warren, P. V.; Holmes, D. J.; Ji, Y.; Lonsdale, J. T. Drug Discov. Today 2001, 6 (10), 537. doi: 10.1016/S1359-6446(01)01774-3

    8. [8]

      (8) Campbell, J.W.; Cronan, E. J., Jr. Annu. Rev. Microbiol. 2001, 55, 305. doi: 10.1146/annurev.micro.55.1.305

    9. [9]

      (9) Miller,W. H.; Seefeld, M. A.; Newlander, K. A.; Uzinskas, I. N.; Burgess,W. J.; Heerding, D. A.; Yuan, C. C. K.; Head, M. S.; Payne, D. J.; Rittenhouse, S. F.; Moore, T. D.; Pearson, S. C.; Berry, V.; DeWolf,W. E., Jr.; Keller, P. M.; Polizzi, B. J.; Qiu, X.; Janson, C. A.; Huffman,W. F. J. Med. Chem. 2002, 45 (15), 3246. doi: 10.1021/jm020050+

    10. [10]

      (10) Zhang, X. H.; Yu, H.;Wang, L. L.; Li, S. Foreign Medical Sciences Section of Pharmacy 2006, 33 (4), 262. [张学辉, 于红, 王莉莉, 李松. 国外医学: 药学分册, 2006, 33 (4), 262.]

    11. [11]

      (11) Bergler, H.; Fuchsbichler, S.; Högenauer, G.; Turnowsky, F. European Journal of Biochemistry 1996, 242 (3), 689. doi: 10.1111/ejb.1996.242.issue-3

    12. [12]

      (12) Lu, X.; Huang, K.; You, Q. Expert Opin. Ther. Patents 2011, 21 (7), 1007. doi: 10.1517/13543776.2011.581227

    13. [13]

      (13) Kim, K. H.; Ha, B. H.; Kim, S. J.; Hong, S. K.; Hwang, K. Y.; Kim, E. E. J. Mol. Biol. 2011, 406 (3), 403. doi: 10.1016/j.jmb.2010.12.003

    14. [14]

      (14) Mehboob, S.; Hevener, K. E.; Truong, K.; Boci, T.; Santarsiero, B. D.; Johnson, M. E. J. Med. Chem. 2012, 55 (12), 5933. doi: 10.1021/jm300489v

    15. [15]

      (15) Hu, X.; Compton, J. R.; AbdulHameed, M. D. M.; Marchand, C. L.; Robertson, K. L.; Leary, D. H.; Jadhav, A.; Hershfield, J. R.; Wallqvist, A.; Friedlander, A. M.; Legler, P. M. J. Med. Chem. 2013, 56 (13), 5275. doi: 10.1021/jm4001242

    16. [16]

      (16) Grassberger, M. A.; Turnowsky, F.; Hildebrandt, J. J. Med. Chem. 1984, 27 (8), 947. doi: 10.1021/jm00374a003

    17. [17]

      (17) Levy, C.W.; Roujeinikova, A.; Sedelnikova, S.; Baker, P. J.; Stuitje, A. R.; Slabas, A. R.; Rice, D.W.; Rafferty, J. B. Nature 1999, 398 (6726), 383. doi: 10.1038/18803

    18. [18]

      (18) Qiu, X.; Abdel-Meguid, S. S.; Janson, C. A.; Court, R. I.; Smyth, M. G.; Payne, D. J. Protein Sci. 1999, 8 (11), 2529.

    19. [19]

      (19) Rafi, S.; Novichenok, P.; Kolappan, S.; Zhang, X.; Stratton, C. F.; Rawat, R.; Kisker, C.; Simmerling, C.; Tonge, P. J. J. Biol. Chem. 2006, 281 (51), 39285. doi: 10.1074/jbc.M608758200

    20. [20]

      (20) Priyadarshi, A.; Kim, E. E.; Hwang, K. Y. Proteins: Structure, Function, and Bioinformatics 2010, 78 (2), 480. doi: 10.1002/prot.v78:2

    21. [21]

      (21) Heath, R. J.; Rubin, J. R.; Holland, D. R.; Zhang, E.; Snow, M. E.; Rock, C. O. J. Biol. Chem. 1999, 274 (16), 11110. doi: 10.1074/jbc.274.16.11110

    22. [22]

      (22) Baldock, C.; Rafferty, J. B.; Sedelnikova, S. E.; Baker, P. J.; Stuitje, A. R.; Slabas, A. R.; Hawkes, T. R.; Rice, D.W. Science 1996, 274 (5295), 2107. doi: 10.1126/science.274.5295.2107

    23. [23]

      (23) DeLano,W. L. The PyMOL Molecular Graphics System, Revision 0.99; DeLano Scientific.: San Carlos, CA, USA, 2002.

    24. [24]

      (24) Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4 (3), 435. doi: 10.1021/ct700301q

    25. [25]

      (25) Berendsen, H. J.; van der Spoel, D.; van Drunen, R. Comput. Phys. Commun. 1995, 91 (1), 43.

    26. [26]

      (26) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Proteins: Structure, Function, and Bioinformatics 2006, 65 (3), 712. doi: 10.1002/prot.v65:3

    27. [27]

      (27) Wang, J.;Wolf, R. M.; Caldwell, J.W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25 (9), 1157.

    28. [28]

      (28) Pettersen, E. F.; ddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25 (13), 1605.

    29. [29]

      (29) Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. J. Comput. Chem. 2000, 21 (2), 132. doi: 10.1002/(SICI)1096-987X(20000130)21:2<>1.0.CO;2-6

    30. [30]

      (30) Ryde, U. Protein Sci. 1995, 4 (6), 1124.

    31. [31]

      (31) Sousa da Silva, A.W.; Vranken,W. F. BMC Research Notes 2012, 5 (1), 367. doi: 10.1186/1756-0500-5-367

    32. [32]

      (32) Jorgensen,W. L.; Chandrasekhar, J.; Madura, J. D.; Madura, J. D.; Impey, R.W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. doi: 10.1063/1.445869

    33. [33]

      (33) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103 (19), 8577. doi: 10.1063/1.470117

    34. [34]

      (34) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comput. Chem. 1997, 18 (12), 1463.

    35. [35]

      (35) Durrant, J. D.; de Oliveira, C. A. F.; McCammon, J. A. J. Mol. Graph. Model. 2011, 29 (5), 773. doi: 10.1016/j.jmgm.2010.10.007

    36. [36]

      (36) Kabsch,W.; Sander, C. Biopolymers 1983, 22 (12), 2577.

    37. [37]

      (37) Liu, F. F.; Dong, X. Y.; Sun, Y. Acta Phys. -Chim. Sin. 2010, 26 (6), 1643. [刘夫锋, 董晓燕, 孙彦. 物理化学学报, 2010, 26 (6), 1643.] doi: 10.3866/PKU.WHXB20100613

    38. [38]

      (38) Otero, J. M.; Noel, A. J.; Guardado-Calvo, P.; Llamas-Saiz, A. L.;Wende,W.; Schierling, B.; Pin ud, A.; van Raaij, M. J. Acta Crystallogr. Sect. F: Struct. Biol. Cryst. Commun. 2012, 68 (10), 1139.

    39. [39]

      (39) Cao, J.; Cao, Z. X.; Zhao, L. L.;Wang, J. H. Acta Phys. -Chim. Sin. 2012, 28 (2), 479. [曹剑, 曹赞霞, 赵立岭, 王吉华. 物理化学学报, 2012, 28 (2), 479.] doi: 10.3866/PKU.WHXB201111231

    40. [40]

      (40) Laskowski, R. A.; Swindells, M. B. J. Chem. Inf. Model. 2011, 51, 2778. doi: 10.1021/ci200227u

    41. [41]

      (41) Gadhe, C. G.; Kothandan, G.; Cho, S. J. Bull. Korean Chem. Soc. 2013, 34 (8), 2467.


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    9. [9]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    10. [10]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    11. [11]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    15. [15]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    16. [16]

      Yanqi WuYuhong GuanPeilin HuangHui ChenLiping BaiZhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308

    17. [17]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    18. [18]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    19. [19]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    20. [20]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(1039)
  • Abstract views(929)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return