Citation: YANG Wen-Chao, BI Yu-Jing, YANG Bang-Cheng, WANG De-Yu, SHI Si-Qi. Preparation and Electrochemical Characterization of Nano-LiMnPO4[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 460-466. doi: 10.3866/PKU.WHXB201401074
-
Nano-LiMnPO4 samples were synthesized via a two-step heating polyol method. The role of the first thermal plateau temperature T1 (T1=100, 110, 120, 130, 140, 150 ℃) on the physical and electrochemical properties of the samples was investigated. Their structures and morphologies were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and N2 sorption measurements. All samples at different plateau temperatures exhibited a sheet structure. At T1=100-120 ℃, samples contained some impurities, and their specific surface areas were <15 m2·g-1. Pure nano-LiMnPO4 was obtained at T1=130 ℃, and exhibited the largest specific surface area (46.3 m2·g-1). The specific surface areas of samples remained at 35-37 m2·g-1 with further increase in T1. The electrochemical performance of the nano-LiMnPO4 samples followed the same trend as their specific surface areas. Nano-LiMnPO4 at T1=130 ℃ exhibited the best electrochemical performance, with a discharge capacity of 129 mAh·g-1 at 0.1C rate and 81 mAh·g-1 at 5C rate. This indicated that the specific surface area is one of the key factors in determining the electrochemical performance of LiMnPO4.
-
-
[1]
(1) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B. J. Electrochem. Soc. 1997, 144, 1188. doi: 10.1149/1.1837571
-
[2]
(2) Kim, S.W.; Kim, J.; Gwon, H.; Kang, K. J. Electrochem. Soc. 2009, 156, A635.
-
[3]
(3) Chen, G.; Richardson, T. J. J. Power Sources 2010, 195, 1221. doi: 10.1016/j.jpowsour.2009.08.046
-
[4]
(4) Chen, G.; Richardson, T. J. J. Electrochem. Soc. 2009, 156, A756.
-
[5]
(5) Martha, S. K.; Markovsky, B.; Grinblat, J.; fer, Y.; Haik, O.; Zinigrad, E.; Aurbach, D.; Drezen, T.;Wang, D.; Deghenghi, G.; Exnar, I. J. Electrochem. Soc. 2009, 156, A541.
-
[6]
(6) Yamada, A.; Chung, S. C. J. Electrochem. Soc. 2001, 148, A960.
-
[7]
(7) Wang, D. Y.; Buqa, H.; Crouzel, M.; Deghenghi, G.; Drezen, T.; Exnar, I.; Miners, J.; Poletto, L.; Grätzel, M. J. Power Sources 2009, 189, 624. doi: 10.1016/j.jpowsour.2008.09.077
-
[8]
(8) Liu, J. L.; Liu, X. Y.; Huang, T.; Yu, A. S. J. Power Sources 2013, 229, 203. doi: 10.1016/j.jpowsour.2012.11.093
-
[9]
(9) Delacourt, C.; Poizot, P.; Morcrette, M.; Tarascon, J. M.; Masquelier, C. Chem. Mater. 2004, 16, 93. doi: 10.1021/cm030347b
-
[10]
(10) Kwon, N. H.; Drezen, T.; Exnar, I.; Teerlinck, I.; Isono, M.; Grätzel, M. Electrochem. Solid-State Lett. 2006, 9, A277.
-
[11]
(11) Yoshida, J.; Stark, M.; Holzbock, J.; Hüsing, N.; Nakanishi, S.; Iba, H.; Abe, H.; Naito, M. J. Power Sources 2013, 226, 122. doi: 10.1016/j.jpowsour.2012.09.081
-
[12]
(12) Pieczonka, N. P.W.; Liu, Z. Y.; Ash, F. H.; Kim, J. H. J. Power Sources 2013, 230, 122. doi: 10.1016/j.jpowsour.2012.12.027
-
[13]
(13) Fang, H. S.; Li, L. P.; Yang, Y.; Yan, G. F.; Li, G. S. Chem. Commun. 2008, 1118.
-
[14]
(14) Xiao, J.; Xu,W.; Choi, D.; Zhang, J. J. Electrochem. Soc. 2010, 157, A142.
-
[15]
(15) Oh, S. M.; Oh, S.W.; Yoon, C. S.; Scrosati, B.; Amine, K.; Sun, Y. K. Adv. Funct. Mater. 2010, 20, 3260. doi: 10.1002/adfm.201000469
-
[16]
(16) Martha, S. K.; Grinblat, J.; Haik, O.; Zinigrad, E.; Drezen, T.; Miners, J. H.; Exnar, I.; Kay, A.; Markovsky, B.; Aubach, D. Angew. Chem. Int. Edit. 2009, 48, 8559. doi: 10.1002/anie.v48:45
-
[17]
(17) Wang, D. Y.; Ouyang, C. Y.; Kwon, N. H.; Drezen, T.; Buqa, H.; Exnar, I.; Kay, A.; Miners, J. H.;Wang, M. K.; Grätzel, M. J. Electrochem. Soc. 2010, 157, A225.
-
[18]
(18) Zhang, B.;Wang, X.; Liu, Z.; Li, H.; Huang, X. J. Electrochem. Soc. 2010, 157, A285.
-
[19]
(19) Shiratsuchi, T.; Okada, S.; Doi, T.; Yamak, J. I. Electrochim. Acta 2009, 54, 3145. doi: 10.1016/j.electacta.2008.11.069
-
[20]
(20) Feldmann, C. Adv. Funct. Mater. 2003, 13, 101. doi: 10.1002/adfm.v13:2
-
[21]
(21) Feldmann, C.; Metzmacher, C. J. Mater. Chem. 2001, 11, 122. doi: 10.1039/b103167h
-
[22]
(22) Larcher, D.; Gérand, B.; Tarascon, J. M. Electrochem. Solid- State Lett. 1998, 2, 137.
-
[23]
(23) Larcher, D.; Gérand, B.; Tarascon, J. M. Int. J. Inorg. Mater. 2000, 2, 389.
-
[24]
(24) Kim, D. H.; Ahn, Y. S.; Kim, J. Electrochem. Commun. 2005, 7, 1340. doi: 10.1016/j.elecom.2005.09.027
-
[25]
(25) Chang, X. Y.;Wang, Z. X.; Li, X. H.; Kuang, Q.; Pei,W. J.;Guo, H. J.; Zhang, Y. H. Acta Phys. -Chim. Sin. 2004, 20, 1249. [常晓燕, 王志兴, 李新海, 匡琼, 彭文杰, 郭华军, 张云河. 物理化学学报, 2004, 20, 1249.] doi: 10.3866/PKU.WHXB20041017
-
[26]
(26) Kim, D. H.; Kim, J. Electrochem. Solid-State Lett. 2006, 9, A439.
-
[27]
(27) Kim, T. R.; Kim, D. H.; Ryu, H.W.; Moon, J. H.; Lee, J. H.; Boo, S. J. Phys. Chem. Solids 2007, 68, 1203. doi: 10.1016/j.jpcs.2007.03.027
-
[28]
(28) Vasanthi, R.; Kalpana, D.; Renganathan, N. G. Electrochem. Solid-State Lett. 2008, 12, 961.
-
[29]
(29) Choi, D.;Wang, D. H.; Bae, I. T.; Xiao, J.; Nie, Z.;Wang,W.; Viswanathan, V. V.; Lee, Y. J.; Zhang, J. G.; Graff, G. L.; Yang, Z. G.; Liu, J. Nano Lett. 2010, 10, 2799. doi: 10.1021/nl1007085
-
[30]
(30) Moon, S.; Muralidharan, P.; Kim, D. K. Ceram. Int. 2012, 38S, S471.
-
[31]
(31) Shi, S. Q.; Zhang, H.; Ke, X. Z.; Ouyang, C. Y.; Lei, M. S.; Chen, L. Q. Phys. Lett. A 2009, 373, 4096. doi: 10.1016/j.physleta.2009.09.014
-
[32]
(32) Andersson, A. S.; Thomas, J. O.; Kalska, B.; Haggstrom, L. Electrochem. Solid-State Lett. 2000, 3, 66.
-
[33]
(33) Nie, P.; Shen, L. F.; Chen, L.; Su, X. F.; Zhang, X. G.; Li, H. S. Acta Phys. -Chim. Sin. 2011, 27, 2123. [聂平, 申来法, 陈琳, 苏晓飞, 张校刚, 李洪森. 物理化学学报, 2011, 27, 2123.] doi: 10.3866/PKU.WHXB20110902
-
[34]
(34) Ji, H. M.; Yang, G.; Ni, H.; Roy, S.; Pinto, J.; Jiang, X. F. Electrochim. Acta 2011, 56, 3093. doi: 10.1016/j.electacta.2011.01.079
-
[1]
-
-
[1]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[2]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[3]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[4]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[5]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[6]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[7]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[8]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[9]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[10]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[11]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[12]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[13]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[14]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[15]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[16]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[17]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[18]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[19]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[20]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[1]
Metrics
- PDF Downloads(904)
- Abstract views(865)
- HTML views(6)