Citation: WANG Jing-Sheng, WANG En-Jun, YU Yan-Long, GUO Li-Mei, CAO Ya-An. Visible Light Photocatalytic Activity of an In-Doped TiO2 Thin Film with a Three-Dimensional Ordered Structure[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 513-519. doi: 10.3866/PKU.WHXB201401073
-
An In-doped TiO2 thin film with a three-dimensional (3D) ordered structure (IO-TiO2-In) was prepared by the self-assembly template method of polystyrene colloidal crystal growth and sol-gel method. The visible light photocatalytic activity of the IO-TiO2-In thin film for the degradation of formaldehyde is five times that of TiO2 and undoped IO-TiO2. The crystal structure, surface microstructure, and energy band structure of the catalyst were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy. The IO-TiO2-In thin film is an ordered anatase structure, which increases the specific surface area and photo efficiency, compared with those of pure TiO2. Doped In ions form In2O3 and O-In-Clx (x=1, 2) species on the surface of the thin film. This increases the absorption of visible light, and promotes the separation of photogenerated charge carriers. It improves the efficiency of photogenerated charge carriers in the photocatalytic reaction at the solid/gas interface, and significantly increases the visible light photocatalytic activity.
-
-
[1]
(1) Choi,W.; Termin, A.; Hoffmann, M. R. J. Phys. Chem. 1994, 98, 13669. doi: 10.1021/j100102a038
-
[2]
(2) Ghicov, A.; Macak, J. M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Frey, L.; Schmuki, P. Nano Lett. 2006, 6, 1080. doi: 10.1021/nl0600979
-
[3]
(3) Chen, X. B.; Mao, S. S. Chem. Rev. 2007, 107, 2891. doi: 10.1021/cr0500535
-
[4]
(4) Wang, C.; Bahnemanna, D.W.; Dohrmannb, J. K. Chem. Commun. 2000, 1539.
-
[5]
(5) Jing, L. Q.; Fu, H. G.;Wang, B. Q.;Wang, D. J.; Xin, B. F.; Li, S. D.; Sun, J. Z. Appl. Catal. B 2006, 62, 282. doi: 10.1016/j.apcatb.2005.08.012
-
[6]
(6) Fresno, F.; Tudela, D.; Coronado, J. M.; Fernández-Gracía, M.; Hungría, A. B.; Soria, J. Phys. Chem. Chem. Phys. 2006, 8, 2421. doi: 10.1039/b601920j
-
[7]
(7) Yu, J. G.; Liu, S.W.; Zhou, M. H. J. Phys. Chem. C 2008, 112, 2050. doi: 10.1021/jp0770007
-
[8]
(8) Huo, Y. N.; Zhu, J.; Li, J. X.; Li, G. S.; Li, H. X. Journal of Molecular Catalysis A: Chemical 2007, 278, 237. doi: 10.1016/j.molcata.2007.07.054
-
[9]
(9) Wu, C.; Chao, C.; Kuo, F. Catal. Today 2004, 97, 103. doi: 10.1016/j.cattod.2004.04.055
-
[10]
(10) Anpo, M.; Takeuchi, M. J. Catal. 2003, 216, 505. doi: 10.1016/S0021-9517(02)00104-5
-
[11]
(11) Wang, P.;Wang, D. J.; Xie, T. F.; Li, H. Y.; Yang, M.;Wei, X. Mater. Chem. Phys. 2008, 109, 181. doi: 10.1016/j.matchemphys.2007.11.019
-
[12]
(12) Liang, C. H.; Li, F. B.; Liu, C. S.; Lu, J. L.;Wang, X. G. Dyes and Pigments 2008, 76, 477. doi: 10.1016/j.dyepig.2006.10.006
-
[13]
(13) Cao, Y. Q.; He, T.; Zhao, L. S.;Wang, E. J.; Yang,W. S.; Cao, Y. A. J. Phys. Chem. C 2009, 113, 18121. doi: 10.1021/jp9069288
-
[14]
(14) Wang, E. J.; Yang, H. Y.; Cao, Y. A. J. Chem. 2009, 67, 2759.
-
[15]
(15) Luo, D. C.; Zhang, L. L.; Long, H. J.; Chen, Y. M.; Cao, Y. A. Acta Phys. -Chim. Sin. 2008, 24, 1095. [罗大超, 张兰兰, 龙绘锦, 陈咏梅, 曹亚安. 物理化学学报, 2008, 24, 1095.] doi: 10.3866/PKU.WHXB20080632
-
[16]
(16) Wang, E. J.; Yang,W. S.; Cao, Y. A. J. Phys. Chem. C 2009, 113, 20912. doi: 10.1021/jp9041793
-
[17]
(17) Cao, Y. Q.; He, T.; Chen, Y. M. J. Phys. Chem. C 2010, 114, 3627. doi: 10.1021/jp100786x
-
[18]
(18) Yuan, J. X.;Wang, E. J.; Chen, Y. M.; Yang,W. S.; Yao, J. H.; Cao, Y. A. Appl. Surf. Sci. 2011, 257, 7335. doi: 10.1016/j.apsusc.2011.03.139
-
[19]
(19) Chen, J. I. L.; Freymann, G.; Choi, S. Y.; Kitaev, V. G.; Ozin, A. Adv. Mater. 2006, 18, 1915.
-
[20]
(20) Chen, I. L.; Freymann, G. V.; Kitaev, V.; Ozin, G. A. J. Am. Chem. Soc. 2007, 129, 1196. doi: 10.1021/ja066102s
-
[21]
(21) Chen, J. I. L.; Loso, E.; Ebrahim, N.; Ozin, G. A. J. Am. Chem. Soc. 2008, 130, 5420. doi: 10.1021/ja800288f
-
[22]
(22) Chen, J. I. L.; Freymann, G.; Choi, S. Y.; Kitaev, V.; Ozin, G. A. J. Mater. Chem. 2008, 18, 369. doi: 10.1039/b708474a
-
[23]
(23) King, J. S.; Graugnard, E.; Summers, C. J. Adv. Mater. 2005, 17, 1010.
-
[24]
(24) Ren, M.; Ravikrishna, R.; Valsaraj, K. T. Environ. Sci. Technol. 2006, 40, 7029. doi: 10.1021/es061045o
-
[25]
(25) Doong, R. A.; Chang, S. M.; Hung, Y. C. Sep. Purif. Technol. 2007, 58, 192. doi: 10.1016/j.seppur.2007.07.029
-
[26]
(26) Li, Q.; Shang, J. K. J. Am. Chem. Soc. 2008, 91, 660.
-
[27]
(27) Gao, B. F.; Ma, Y.; Cao, Y. A.; Yang,W. S.; Yao, J. N. J. Phys. Chem. B 2006, 110, 14391. doi: 10.1021/jp0624606
-
[28]
(28) Cao, Y. A.; Yang,W. S.; Chen, Y. M.; Du, H.; Yue, P. Appl. Surf. Sci. 2004, 236, 223. doi: 10.1016/j.apsusc.2004.04.020
-
[29]
(29) Li, J.; Zeng, H. C. J. Am. Chem. Soc. 2007, 129, 5839.
-
[30]
(30) Reddya, B. M.; Chowdhury, B.; Smirniotis, P. G. Appl. Catal. A 2001, 219, 53. doi: 10.1016/S0926-860X(01)00658-5
-
[31]
(31) Freeland, B. H.; Habeeb, J. J.; Tuck, D. G. Can. J. Chem. 1977, 55, 1527. doi: 10.1139/v77-213
-
[32]
(32) Zhu, J.; Zheng,W.; He, B.; Zhang, J. L.; Anpob, M. J. Mol. Catal. A: Chem. 2004, 216, 35. doi: 10.1016/j.molcata.2004.01.008
-
[33]
(33) Mousty-Desbuquoit, C.; Riga, J.; Verbist, J. J. J. Chem. Phys. 1983, 79, 26. doi: 10.1063/1.445567
-
[34]
(34) Poznyak, S. K.; Talapin, D. V.; Kulak, A. I. J. Phys. Chem. B 2001, 105, 4816. doi: 10.1021/jp003247r
-
[35]
(35) Cao, Y. A.; Zhang, X. T.; Yang,W. S.; Du, H.; Bai, Y. B.; Li, T. J.; Yao, J. N. Chem. Mater. 2000, 12, 3445. doi: 10.1021/cm0004432
-
[36]
(36) Long, H. J.;Wang, E. J.; Dong, J. Z.;Wang, L. L.; Cao, Y. Q.; Yang,W. S.; Cao, Y. A. J. Chem. 2009, 67, 1533.
-
[1]
-
-
[1]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[2]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[3]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[4]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[5]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[6]
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
-
[7]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[8]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[9]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[10]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[11]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[12]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[13]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[14]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[15]
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
-
[16]
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
-
[17]
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
-
[18]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[19]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[20]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[1]
Metrics
- PDF Downloads(629)
- Abstract views(733)
- HTML views(3)