Citation: JIN Hao, SUN Xiao-Dan, DONG Shu, WU Yi-Zhi, SUN Su-Hua, LIU Jie, ZHU Hui-Hong, YANG Guang, YI Xiao-Dong, FANG Wei-Ping. Influence of Cs Substitution on the Structural Properties and Catalytic Performance of Ni-H3PW12O40/SiO2 Catalysts[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 527-534. doi: 10.3866/PKU.WHXB201401072
-
Cs-substituted Ni-CsxH3-xPW12O40/SiO2 catalysts were prepared by two-step impregnation and in situ reaction on the support. The catalysts were characterized by N2 adsorption measurements, inductively coupled plasma atomic emission spectrometry, Raman spectroscopy, in situ X-ray diffraction, NH3-temperature programmed desorption (TPD), H2-temperature programmed reduction, H2-TPD, and Fourier transform infrared spectroscopy. The hydrocracking of n-decane was used to study the catalytic performance of the Ni-CsxH3-xPW12O40/SiO2 catalysts. The highest C5+ yield obtained for 8%Ni-50%Cs1.5H1.5PW/SiO2 was superior to those of 8%Ni-50% H3PW/SiO2 and an industrial catalyst. The conversion of n-decane slightly decreased and the C5+ selectivity increased with increasing Cs content in the CsxH3-xPW catalysts. Ni-CsxH3-xPW12O40/SiO2 catalysts possessed relatively large pore sizes, so the improved selectivity might have been due to a weaker acidity of the catalysts. The reduced conversion might have been due to a weaker hydrogenation ability.
-
Keywords:
-
Hydrocracking
, - n-Decane,
- Bifunctional catalyst,
- Ni,
- Cs,
- H3PW12O40
-
-
-
[1]
(1) Morawski, I.; Mosio-Mosiewski, J. Fuel Process. Technol. 2006, 87, 659. doi: 10.1016/j.fuproc.2006.01.006
-
[2]
(2) Ancheyta, J.; Sánchez, S.; Rodríguez, M. A. Catal. Today 2005, 109, 76. doi: 10.1016/j.cattod.2005.08.015
-
[3]
(3) Roussel, M.; Lemberton, J. L.; Guisnet, M.; Cseri, T.; Benazzi, E. J. Catal. 2003, 218, 427. doi: 10.1016/S0021-9517(03)00164-7
-
[4]
(4) Calemma, V.; Peratello, S.; Pere , C. Appl. Catal. A: Gen. 2000, 190, 207. doi: 10.1016/S0926-860X(99)00292-6
-
[5]
(5) Ren, X. T.; Li, N.; Cao, J. Q.;Wang, Z. Y.; Liu, S. Y.; Xiang, S. H. Appl. Catal. A: Gen. 2006, 298, 144. doi: 10.1016/j.apcata.2005.09.031
-
[6]
(6) Zeng, S. Q.; Blanchard, J.; Breysse, M.; Shi, Y. H.; Su, X. T.; Nie, H. Appl. Catal. A: Gen. 2005, 294, 59. doi: 10.1016/j.apcata.2005.07.015
-
[7]
(7) Roussel, M.; Norsic, S.; Lemberton, J. L.; Guisnet, M.; Cseri, T.; Benazzi, E. Appl. Catal. A: Gen. 2005, 279, 53. doi: 10.1016/j.apcata.2004.10.011
-
[8]
(8) Timofeeva, M. N. Appl. Catal. A: Gen. 2003, 256, 19. doi: 10.1016/S0926-860X(03)00386-7
-
[9]
(9) Zhang, Q. D.; Tan, Y. S.; Yang, C. H.; Han, Y. Z. J. Mol. Catal. A: Chem. 2007, 263, 149. doi: 10.1016/j.molcata.2006.08.044
-
[10]
(10) Zhang, P.; Huang, M.; Chu,W.; Luo, S. Z.; Li, T. Acta Phys. -Chim. Sin. 2013, 29, 770. [张坡, 黄明, 储伟, 罗仕忠, 李通. 物理化学学报, 2013, 29, 770.] doi: 10.3866/PKU.WHXB201301152
-
[11]
(11) Gu, L. Y.; Gao, B. J.; Fang, X. L. Acta Phys. -Chim. Sin. 2013, 29, 191. [顾来沅, 高保娇, 房晓琳. 物理化学学报, 2013, 29, 191.] doi: 10.3866/PKU.WHXB201210266
-
[12]
(12) Yuan, C. Y.; Chen, J. Chin. J. Catal. 2011, 32, 1191. doi: 10.1016/S1872-2067(10)60236-7
-
[13]
(13) Kumar, G. S.; Vishnuvarthan, M.; Palanichamy, M.; Murugesan, V. J. Mol. Catal. A: Chem. 2006, 260, 49. doi: 10.1016/j.molcata.2006.07.050
-
[14]
(14) Yang, X. K.; Chen, L. F.;Wang, J. A.; Noreña, L. E.; Novaro, O. Catal. Today 2009, 148, 160. doi: 10.1016/j.cattod.2009.03.022
-
[15]
(15) Wang, J. A.; Chen, L. F.; Noreña, L. E.; Navarrete, J. Appl. Catal. A: Gen. 2009, 357, 223. doi: 10.1016/j.apcata.2009.01.023
-
[16]
(16) Qiu, B.; Yi, X. D.; Lin, L.; Fang,W. P.;Wan, H. L. Catal. Today 2008, 131, 464. doi: 10.1016/j.cattod.2007.10.095
-
[17]
(17) Qiu, B.; Yi, X. D.; Lin, L.; Fang,W. P.;Wan, H. L. Catal. Commun. 2009, 10, 1296. doi: 10.1016/j.catcom.2009.02.007
-
[18]
(18) Vazquez, P.; Pizzio, L.; Romanelli, G.; Autino, J.; Caceres, C.; Blanco, M. Appl. Catal. A: Gen. 2002, 235, 233, doi: 10.1016/S0926-860X(02)00266-1
-
[19]
(19) Haber, J.; Pamin, K.; Matachowski, L.; Mucha, D. Appl. Catal. A: Gen. 2003, 256, 141. doi: 10.1016/S0926-860X(03)00395-8
-
[20]
(20) Narasimharao, K.; Brown, D. R.; Lee, A. F.; Newman, A. D.; Siril, P. F.; Tavener, S. J.;Wilson, K. J. Catal. 2007, 248, 226. doi: 10.1016/j.jcat.2007.02.016
-
[21]
(21) Luzgin, M. V.; Kazantsev, M. S.; Volkova, G. G.;Wang,W.; Stepanov, A. G. J. Catal. 2011, 277, 72. doi: 10.1016/j.jcat.2010.10.015
-
[22]
(22) Okuhara, T.; Kimura, M.; Kawai, T.; Xu, Z.; Nakato, T. Catal. Today 1998, 45, 73. doi: 10.1016/S0920-5861(98)00251-X
-
[23]
(23) Choi, S.;Wang, Y.; Nie, Z.; Liu, J.; Peden, C. H. F. Catal. Today 2000, 55, 117. doi: 10.1016/S0920-5861(99)00231-X
-
[24]
(24) Soled, S.; Miseo, S.; McVicker, G.; Gates,W. E.; Gutierrez, A.; Paes, J. Catal. Today 1997, 36, 441. doi: 10.1016/S0920-5861(96)00235-0
-
[25]
(25) Yang,W.; Billy, J.; Taârit, Y. B.; Védrine, J. C.; Essayem, N. Catal. Today 2002, 73, 153. doi: 10.1016/S0920-5861(01)00508-9
-
[26]
(26) Gao, R. H.; Chen, H.; Le, Y. Y.; Dai,W. L.; Fan, K. N. Appl. Catal. A: Gen. 2009, 352, 61. doi: 10.1016/j.apcata.2008.09.031
-
[27]
(27) Jin, H.; Yi, X. D.; Sun, S. H.; Liu, J.; Yang, G.; Zhu, H. H.; Fang,W. P. Fuel Process. Technol. 2012, 97, 52. doi: 10.1016/j.fuproc.2012.01.011
-
[28]
(28) Popa, A.; Sasca, V.; Holclajtner-Antunovi , I. Microporous Mesoporous Mat. 2012, 156, 127. doi: 10.1016/j.micromeso.2012.02.030
-
[29]
(29) Yuan, S. H.; Ji, N. H.; Xia,W. S.; Yi, X. D.; Fang,W. P. React. Kinet. Mech. Catal. 2012, 106, 475. doi: 10.1007/s11144-012-0448-y
-
[30]
(30) Jin, H.; Guo, D. Y.; Sun, X. D.; Sun, S. H.; Liu, J.; Zhu, H. H.; Yang, G.; Yi, X. D.; Fang,W. P. Fuel 2013, 112, 134. doi: 10.1016/j.fuel.2013.05.007
-
[31]
(31) Rocchiccioli-Deltcheff, C.; Fournier, M.; Franck, R.; Thouvenot, R. Inorg. Chem. 1983, 22, 207. doi: 10.1021/ic00144a006
-
[32]
(32) Qu, X. S.; Guo, Y. H.; Hu, C.W. J. Mol. Catal. A: Chem. 2007, 262, 128. doi: 10.1016/j.molcata.2006.08.026
-
[33]
(33) Chen, L. F.; Noreña, L. E.;Wang, J. A.; Zhou, X. L.; Navarrete, J.; Hernández, I.; Montoya, A.; Pérez Romo, P.; Salas, P.; Castella Pergher, S. Catal. Today 2008, 133-135, 331.
-
[34]
(34) Varisli, D.; Dogu, T.; Dogu, G. Ind. Eng. Chem. Res. 2008, 47, 4071. doi: 10.1021/ie800192t
-
[35]
(35) Jin, H.; Yi, X. D.; Sun, X. D.; Qiu, B.; Fang,W. P.;Weng,W. Z.; Wan, H. L. Fuel 2010, 89, 1953. doi: 10.1016/j.fuel.2009.11.031
-
[36]
(36) Kuba, S.; Lukinskas, P.; Grasselli, R. K.; Gates, B. C.; Knözinger, H. J. Catal. 2003, 216, 353. doi: 10.1016/S0021-9517(02)00125-2
-
[37]
(37) Corma, A.; Martinez, A.; Pergher, S.; Peratello, S.; Pere , C.; Bellusi, G. Appl. Catal. A: Gen. 1997, 152, 107. doi: 10.1016/S0926-860X(96)00338-9
-
[1]
-
-
[1]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[2]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[3]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[4]
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
-
[5]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[6]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[7]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[8]
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
-
[9]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[10]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[11]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[12]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[13]
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
-
[14]
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
-
[15]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[16]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[17]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[18]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[19]
Pan Liu , Yanming Sun , Alberto J. Fernández-Carrión , Bowen Zhang , Hui Fu , Lunhua He , Xing Ming , Congling Yin , Xiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641
-
[20]
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
-
[1]
Metrics
- PDF Downloads(466)
- Abstract views(710)
- HTML views(8)