Citation: ZHANG Qing-Qing, LI Rong, ZHANG Meng-Meng, U Xing-Long. Synthesis and Electrochemical Lithium Storage Performance of WO3 Nanorods/Graphene Nanocomposites[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 476-484. doi: 10.3866/PKU.WHXB201401071
-
WO3 nanorods/graphene nanocomposites (WO3/R ) were prepared by the solvothermal treatment of tungsten hexachloride and graphene oxide in alcohol. The electrochemical performance of WO3/R as anode materials for lithium-ion batteries was investigated by galvanostatic charge-discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The discharge capacity of the composite at the first cycle was 761.4 mAh·g-1, and about 635 mAh·g-1 of reversible capacity remained after 100 cycles at a rate of 0.1C (1C=638 mA·g-1). The corresponding retention rate was 83.4%. The reversible capacity remained lager than 460 mAh·g-1 at a rate of 5C. WO3/R exhibited excellent cycling stability and rate performance, and has potential in advanced lithium-ion batteries.
-
Keywords:
-
Tungsten trioxide
, - Graphene,
- Nanocomposite,
- Lithium-ion battery,
- Anode material
-
-
-
[1]
(1) Poizot, P.; Laruelle, S.; Dupont, L.; Tarascon, J. J. M. Nature 2000, 407, 496. doi: 10.1038/35035045
-
[2]
(2) Park, J. C.; Kim, J.; Kwon, H.; Song, H. Adv. Mater. 2008, 20, 1. doi: 10.1002/adma.v20:16
-
[3]
(3) Chen, J.; Xu, L. N.; Li,W. Y.; u, X. L. Adv. Mater. 2005, 17, 5.
-
[4]
(4) Wang, B.;Wu, H. B.; Zhang, L.; Lou, X.W. Angew. Chem. Int. Edit. 2013, 52, 4165. doi: 10.1002/anie.201300190
-
[5]
(5) Zhen, F. M.; Geng, B. Y.; u, Y. J. Chem. Eur. J. 2009, 15, 6169. doi: 10.1002/chem.v15:25
-
[6]
(6) Manickam, S.; Nanda, G.; Masaki, Y.; Kenichi, N. Nano Energy 2012, 1, 503. doi: 10.1016/j.nanoen.2012.03.003
-
[7]
(7) Gu, Z. J.; Li, H. Q.; Zhai, T. Y.; Yang,W. S.; Xia, Y. Y.; Ma, Y.; Yao, J. N. J. Solid State Electrochem. 2007, 180, 98.
-
[8]
(8) Qiu, Y. C.; Xu, G. L.; Kuang, Q.; Sun, S. G.; Yang, S. H. Nano Res. 2012, 5, 8260.
-
[9]
(9) Guo, X.W.; Fang, X. P.; Sun, Y.; Shen, L. Y.;Wang, Z. X.; Chen, L. Q. J. Power Sources 2013, 226, 75. doi: 10.1016/j.jpowsour.2012.10.068
-
[10]
(10) Sun, X. L.;Wang, X. H.; Qiao, L.; Hu, D. K.; Feng, N.; Li, X. W.; Liu, Y. Q.; He, D. Y. Electrochim. Acta 2012, 66, 204. doi: 10.1016/j.electacta.2012.01.083
-
[11]
(11) Shen, Y. X.; Yan, L.; Song, H. H.; Yang, J.; Yang, G.; Chen, X. H.; Zhou, J. S.; Yu, Z. Z.; Yang, S. B. Angew. Chem. Int. Edit. 2012, 51, 1. doi: 10.1002/anie.201106864
-
[12]
(12) Zhao, Y.; Li, J. X.; Ding, Y. H.; Guan, L. H. Chem. Commun. 2011, 47, 7416. doi: 10.1039/c1cc12171e
-
[13]
(13) Ji, L.W.; Zhang, X.W. Energy Environ. Sci. 2010, 3, 124. doi: 10.1039/b912188a
-
[14]
(14) Cheng, F.; Huang, K. L.; Liu, S. Q.; Fang, X. S.; Zhang, X. Acta Phys. -Chim. Sin. 2011, 27, 1439. [程凤, 黄可龙, 刘素琴, 房雪松, 张新. 物理化学学报, 2011, 27, 1439.] doi: 10.3866/PKU.WHXB20110607
-
[15]
(15) Ren, Y. M.; Zhang, J.; Liu, Y. Y.; Li, H. B.;Wei, H. J.; Li, B. J.; Wang, X. Y. ACS Appl. Mater. Interfaces 2012, 4, 4776. doi: 10.1021/am301131h
-
[16]
(16) Fang,W.; Zuo, P. J.; Ma, Y. L.; Chen, X. Q.; Liao, L. X.; Yin, G. P. Electrochim. Acta 2013, 94, 294. doi: 10.1016/j.electacta.2013.01.132
-
[17]
(17) Chen, Z.; Berciaud, S. P.; Nuckolls, C.; Heinz, T. F.; Brus, L. E. ACS Nano 2010, 4, 2964. doi: 10.1021/nn1005107
-
[18]
(18) Guo, P.; Song, H. H.; Chen, X. H. Electrochem. Commun. 2009, 11, 1320. doi: 10.1016/j.elecom.2009.04.036
-
[19]
(19) Pumera, M. Energy Environ. Sci. 2011, 4, 668. doi: 10.1039/c0ee00295j
-
[20]
(20) Wang, G. X.; Shen, X. P.; Yao, J.; Park, J. Carbon 2009, 47, 2049. doi: 10.1016/j.carbon.2009.03.053
-
[21]
(21) Li, D.; Muller, M.; Gilje, S.; Kaner, R.;Wallace, G. Nat. Nanotechnol. 2008, 3, 101. doi: 10.1038/nnano.2007.451
-
[22]
(22) Yoo, E. J.; Hosono, E.; Zhou, H. S.; Kudo, T.; Honma, I. Nano Lett. 2008, 8, 2277. doi: 10.1021/nl800957b
-
[23]
(23) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017
-
[24]
(24) Li, R.;Wei, Z. D.; u, X. L.; Xu,W. RSC Adv. 2013, 3, 9978. doi: 10.1039/c3ra41079j
-
[25]
(25) Luo, B.; Fang, Y.;Wang, B.; Zhou, J.; Song, H.; Zhi, L. J. Energy Environ. Sci. 2012, 5, 5226. doi: 10.1039/c1ee02800f
-
[26]
(26) Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. ACS Nano 2010, 4, 4324. doi: 10.1021/nn101187z
-
[27]
(27) Yang, J. Q.; Jiao, L. F.; Zhao, Q. Q.;Wang, Q. H.; Gao, H. Y.; Huan, Q. N.; Zheng,W. J.;Wang, Y. J.; Yuan, H. T. J. Mater. Chem. 2012, 22, 3699. doi: 10.1039/c2jm15837j
-
[28]
(28) Qin, J.W.; Cao, M. H.; Li, N.; Hu, C.W. J. Mater. Chem. 2011, 21, 17167. doi: 10.1039/c1jm12692j
-
[29]
(29) Thangavel, S.; Elayaperumal, M.; Venu pal, G. Mater. Express 2012, 2, 327. doi: 10.1166/mex.2012.1087
-
[30]
(30) Akhavan, O.; Choobtashani, M.; Ghaderi, E. J. Phys. Chem. C 2012, 116, 9653. doi: 10.1021/jp301707m
-
[31]
(31) u, J. J.; Li, Y.; Zhu, S. M.; Chen, Z. X.; Liu, Q. L.; Zhang, D.; Moon,W. J, Song, D. M. RSC Adv. 2012, 2, 1356. doi: 10.1039/c1ra00621e
-
[32]
(32) Li,W. J.; Fu, Z.W. Appl. Surf. Sci. 2010, 256, 2447. doi: 10.1016/j.apsusc.2009.10.085
-
[33]
(33) Delmer, O.; Balaya, P.; Kienle, L.; Maier, J. Adv. Mater. 2008,20, 501.
-
[34]
(34) Ding, P.; Xu, Y. L.; Sun, X. F. Acta Phys. -Chim. Sin. 2013, 29, 293. [丁朋, 许友龙, 孙孝飞. 物理化学学报, 2013, 29, 293.] doi: 10.3866/PKU.WHXB201211142
-
[35]
(35) Laruelle, S.; Grugeon, S.; Poizot, P.; Dolle, M.; Dupont, L.; Tarasconet, J. M. J. Electrochem. Soc. 2002, 149, A627.
-
[36]
(36) Jamnik, J.; Maier, J. Phys. Chem. Chem. Phys. 2003, 5, 5215. doi: 10.1039/b309130a
-
[37]
(37) Liu, H.;Wang, X. L.; Hu, J. S.;Wexler, D. Electrochem. Commun. 2008, 10, 1879. doi: 10.1016/j.elecom.2008.09.036
-
[38]
(38) Xu, C. H.; Xu, B. H.; Gu, Y.; Xiong, Z. G.; Sun, J.; Zhao, X. S. Energy Environ. Sci. 2013, 6, 1388. doi: 10.1039/c3ee23870a
-
[39]
(39) Marappan, S.; Satoshi, M.; Takaaki, T.; Itaru, H. J. Phys. Chem. C 2012, 116, 12475. doi: 10.1021/jp303121n
-
[40]
(40) Xu, K.; Shen, L. F.; Mi, C. H.; Zhang, X. G. Acta Phys. -Chim. Sin. 2012, 28, 105. [许科, 申来法, 米常焕, 张校刚. 物理化学学报, 2012, 28, 105.] doi: 10.3866/PKU.WHXB201228105
-
[41]
(41) Reddy, M. V.; Yu, T.; Sow, C. H.; Shen, Z. X.; Lim, C. T.; Rao, G. V.; Chowdari, B. V. R. Adv. Funct. Mater. 2007, 17, 2792.
-
[42]
(42) Gan, L.; Guo, H. J.;Wang, Z. X.; Li, X. H.; Peng,W. J.;Wang, J. X.; Huang, S. L.; Su, M. R. Electrochim. Acta 2013, 104, 117. doi: 10.1016/j.electacta.2013.04.083
-
[43]
(43) Zhuo, L. H.;Wu, Y. Q.;Wang, L. Y.; Yu, Y. C.; Zhang, X. B.; Zhao, F. Y. RSC Adv. 2012, 2, 5084. doi: 10.1039/c2ra00002d
-
[44]
(44) Zou, Y. Q.; Kan, J.;Wang, Y. J. Phys. Chem. C 2011, 115, 20747. doi: 10.1021/jp206876t
-
[45]
(45) Xue, X. Y.; Ma, C. H.; Cui, C. X.; Xing, L. L. Solid State Sci. 2011, 11, 1526.
-
[46]
(46) Chen, J.; Xu, L. N.; Li,W. Y. Adv. Mater. 2005, 17, 582.
-
[1]
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[3]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[4]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[5]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[6]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[7]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[8]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[9]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[10]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[11]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[12]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[13]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[14]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[15]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[16]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[17]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[18]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[19]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[20]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[1]
Metrics
- PDF Downloads(1146)
- Abstract views(892)
- HTML views(4)