Citation: SONG Gen-Ping, XIA Dong-Xiang. One-Step Preparation of Superhydrophobic Polyaniline/Sodium Dodecylbenzenesulfonate Composites[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 583-588. doi: 10.3866/PKU.WHXB201401031 shu

One-Step Preparation of Superhydrophobic Polyaniline/Sodium Dodecylbenzenesulfonate Composites

  • Received Date: 17 September 2013
    Available Online: 3 January 2014

    Fund Project: 江苏省环境材料和环境工程重点实验室项目(017375003k11034)资助 (017375003k11034)

  • Superhydrophobic polyaniline (PANI)/sodium dodecylbenzenesulfonate (SDBS) composites were fabricated in one-step, by the oxidative polymerization of aniline in the presence of SDBS. The morphology and elemental composition of the PANI/SDBS composite were characterized by field-emission scanning electron microscopy. The chemical structure was confirmed by Fourier transform-infrared spectroscopy, ultraviolet-visible spectrophotometry, and X-ray powder diffraction. The superhydrophilic and superhydrophobic properties of the PANI/SDBS composite were determined from water contact angle (WCA) measurements, and were dependent on SDBS concentration, pH, and composite morphology. The formation and superhydrophobic mechanism of the PANI/SDBS composite are discussed. The composite surface had a WCA of >150° at pH 1-9 and SDBS concentration more than 0.016 mol·L-1. SDBS doping resulted in a 98% conversion of the aniline monomer. The superhydrophobic PANI/SDBS composite formed from electrostatic interaction, and sulfamic bonding between the hydrophilic ―SO3- groups of SDBS and ―NH+= of PANI chains. Hydrogen bonding existed between N and H atoms among PANI chains. The electrostatic interaction and hydrogen bonding immobilized the hydrophilic ―SO3- head groups of SDBS around PANI chains, which resulted in the SDBS hydrophobic alkyl chain protruding. These results aid our understanding of the formation of superhydrophobic PANI/SDBS composites, and the design of superhydrophobic materials.

  • 加载中
    1. [1]

      (1) Sheng, X.; Zhang, J.; Jiang, L. Langmuir 2009, 25 (17), 9903. doi: 10.1021/la901058y

    2. [2]

      (2) Reneker, D. H.; Chun, I. Nanotechnology 1996, 7, 216. doi: 10.1088/0957-4484/7/3/009

    3. [3]

      (3) Martin, C. R. Chem. Mater. 1996, 8, 1739. doi: 10.1021/cm960166s

    4. [4]

      (4) Gao, X.; Yao, X.; Jiang, L. Langmuir 2007, 23, 4886. doi: 10.1021/la0630357

    5. [5]

      (5) Hoshino, F.; Kawaguchi, H.; Ohtsuka, Y. Polym . J. 1987, 19, 1157.

    6. [6]

      (6) Zhao, N.; Xie, Q.;Weng, L.;Wang, S.; Zhang, X.; Xu, J. Macromolecules 2005, 38, 8996. doi: 10.1021/ma051560r

    7. [7]

      (7) (a)Wang, B.; Rusling, J. Anal. Chem. 2003, 75, 4229. doi:10.1021/ac034097u

    8. [8]

      (b) Lee, S. H.; Lee, D. H.; Lee, K.; Lee, C.W. Adv. Funct. Mater. 2005, 15, 1495.

    9. [9]

      (8) Zhu, Y.; Zhang, J.; Zheng, Y.; Huang, Z.; Feng, L.; Jiang, L. Adv. Funct. Mater. 2006, 16, 568.

    10. [10]

      (9) Han, J.; Song, G. P.; u, R. Adv. Mater. 2007, 19, 2993.

    11. [11]

      (10) Zhou, C.; Han, J.; u, R. Macromolecules 2008, 41, 6473. doi: 10.1021/ma800500u

    12. [12]

      (11) Zhu, Y.; Li, J.;Wan, M.; Jiang, L. Polymer 2008, 49, 3419. doi: 10.1016/j.polymer.2008.06.027

    13. [13]

      (12) Bico, J.; Tordeux, C.; Quere, D. Europhys. Lett. 2001, 55, 214. doi: 10.1209/epl/i2001-00402-x

    14. [14]

      (13) (a) Cao, L.; Jones, A.; Sikka, V.;Wu, J.; Gao, D. Langmuir 2009, 25, 12444. doi: 10.1021/la902882b

    15. [15]

      (b) Cassie, A. B. D.; Baxter, S. Trans. Faraday Soc. 1944, 40, 546.

    16. [16]

      (14) Ning, Y. C. Structural Identification of Organic Compounds and Organic Spectroscopy, 2nd ed.; Science Press: Beijing, 2001; p 329. [宁永成. 有机化合物结构鉴定与有机波谱学(第二版 ). 北京: 科学出版社, 2001: 329.]

    17. [17]

      (15) Zhang, Z. M.;Wei, Z. X.;Wan, M. X. Macromolecules 2002, 35, 5937.

    18. [18]

      (16) Zhou, C.; Han, J.; Song, G. P.; u, R. Eur. Polym. J. 2008, 44, 2850. doi: 10.1016/j.eurpolymj.2008.01.025

    19. [19]

      (17) Song, G. P.; Han, J.; Guo, R. J. Mater. Sci. 2009, 44, 715. doi: 10.1007/s10853-008-3175-z

    20. [20]

      (18) Feng, L.; Yang, Z.; Zhang, J.; Song, Y.; Liu, B.; Ma, Y.; Yang, Z.; Jiang, L.; Zhu, D. Angew. Chem. Int. Edit. 2003, 42, 4217.

    21. [21]

      (19) Zhang, X. Y.; ux,W. J.; Manohar, S. K. J. Am. Chem. Soc. 2004, 126, 4502. doi: 10.1021/ja031867a

    22. [22]

      (20) Song, G. P.; Han, J.; Guo, R. Synth. Met. 2007, 157, 170. doi: 10.1016/j.synthmet.2006.12.007

    23. [23]

      (21) Streltsov, A.; Shumakovich, G.; Morozova, O.; rbacheva, M.; Yaropolov, A. Appl. Biochem. Biotechnol. 2008, 44, 264.

    24. [24]

      (22) (a)Wang, J.; Hu, J.;Wen, Y. Chem. Mater. 2006, 18, 4984. doi: 10.1021/cm061417s

    25. [25]

      (b) Huang, K.;Wan, M. Chem. Mater. 2002, 14, 3486.

    26. [26]

      (23) Stejskal, J.; Kratochvil, P.; Jenkins, A. D. Polymer 1996, 37, 367. doi: 10.1016/0032-3861(96)81113-X

    27. [27]

      (24) Zhou, C.; Han, J.; Song, G. P.; u, R. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 3563.

    28. [28]

      (25) Tan, S.; Zhai, J.;Wan, M.; Meng, Q.; Li, Y.; Jiang, L.; Zhu, D. J. Phys. Chem. B 2004, 108, 18693. doi: 10.1021/jp046574y


  • 加载中
    1. [1]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    2. [2]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    3. [3]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    4. [4]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    5. [5]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    6. [6]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    7. [7]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    14. [14]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    15. [15]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    16. [16]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

    17. [17]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(717)
  • Abstract views(685)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return