Citation: CAO Zhan-Li, WANG Zhi-Fan, YANG Ming-Li, WANG Fan. Theory Studies on Low-Lying States of Lead Chalcogenide Cations[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 431-438. doi: 10.3866/PKU.WHXB201401023
-
In this work, we investigate the low-lying states of PbS, PbSe, and PbTe cations based on a recently developed equation-of-motion coupled-cluster approach for ionization potentials (EOMIP-CC) with spin-orbit coupling (SOC) at the CCSD level. Equilibrium bond lengths, harmonic frequencies as well as vertical and adiabatic ionization energies are calculated with EOMIP-SOC-CCSD and reasonable agreement with available experimental data is achieved. The contribution of triples is estimated by comparing results at the CCSD(T) level with those from EOMIP-CCSD when SOC is neglected. Better agreement with experimental data can be obtained if the contribution of triples is included. According to our results, the splitting between 2Π state is larger in PbTe+ than that in PbS+ and PbSe+, while coupling between 2Π1/2 and 2Σ1/2 owing to SOC is more significant in PbS+ and PbSe+. This is because the energy difference between 2Π and 2Σ+ states of PbTe+ is larger than that in PbS+ and PbSe+ and the SOC matrix element between 2Π1/2 and 2Σ1/2 states in PbTe+ is only half those in PbS+ and PbSe+. The present work presents new estimates on properties of these low-lying states and could serve as new references for future experiments.
-
-
[1]
(1) Cao, C. F.;Wu, H. Z.; Si, J. X.; Xu, T. N.; Chen, J.; Shen,W. Z. Acta Phys. Sin. 2006, 55, 2021. [曹春芳, 吴惠桢, 斯剑霄, 徐天宁, 陈静, 沈文忠. 物理学报, 2006, 55, 2021.]
-
[2]
(2) Lipovskii, A.; Kolobkova, E.; Petrikov, V.; Kang, I.; Olkhovets, A.; Krauss, T.; Thomas, M.; Silcox, J.;Wise, F.; Shen, Q. Appl. Phys. Lett. 1997, 71, 3406. doi: 10.1063/1.120349
-
[3]
(3) Feit, Z.; McDonald, M.;Woods, R.; Archambault, V.; Mak, P. Appl. Phys. Lett. 1996, 68, 738. doi: 10.1063/1.116726
-
[4]
(4) Krauss, T. D.;Wise, F.W.; Tanner, D. B. Phys. Rev. Lett. 1996, 76, 1376. doi: 10.1103/PhysRevLett.76.1376
-
[5]
(5) Schwarzl, T.; Heib,W.; Springholz, G. Appl. Phys. Lett. 1999, 75, 1246. doi: 10.1063/1.124656
-
[6]
(6) Giuliano, B. M.; Bizzocchi, L.; Cooke, S.; Banser, D.; Hess, M.; Fritzsche, J.; Grabow, J. U. Phys. Chem. Chem. Phys. 2008, 10, 2078. doi: 10.1039/b716896a
-
[7]
(7) Troparevsky, M. C.; Chelikowsky, J. R. J. Chem. Phys. 2001, 114, 943. doi: 10.1063/1.1329126
-
[8]
(8) Karamanis, P.; Maroulis, G.; Pouchan, C. J. Chem. Phys. 2006, 124, 071101. doi: 10.1063/1.2173236
-
[9]
(9) Wang, J.; Ma, L.; Zhao, J.; Jackson, K. A. J. Chem. Phys. 2009, 130, 214307. doi: 10.1063/1.3147519
-
[10]
(10) Sanville, E.; Burnin, A.; BelBruno, J. J. J. Phys. Chem. A 2006, 110, 2378. doi: 10.1021/jp056218v
-
[11]
(11) Zeng, H.; Schelly, Z. A.; Ueno-Noto, K.; Marynick, D. S. J. Phys. Chem. A 2005, 109, 1616. doi: 10.1021/jp040457l
-
[12]
(12) He, J.; Liu, C.; Li, F.; Sa, R.;Wu, K. Chem. Phys. Lett. 2008, 457, 163. doi: 10.1016/j.cplett.2008.03.085
-
[13]
(13) Koirala, P.; Kiran, B.; Kandalam, A. K.; Fancher, C. A.; de Clercq, H. L.; Li, X.; Bowen, K. H. J. Chem. Phys. 2011, 135, 134311. doi: 10.1063/1.3635406
-
[14]
(14) Zeng, Q.; Shi, J.; Jiang, G.; Yang, M.;Wang, F.; Chen, J. J. Chem. Phys. 2013, 139, 094305. doi: 10.1063/1.4819695
-
[15]
(15) Hummer, K.; Grüneis, A.; Kresse, G. Phys. Rev. B 2007, 75, 195211. doi: 10.1103/PhysRevB.75.195211
-
[16]
(16) Albanesi, E. A.; Okoye, C.; Rodriguez, C. M. I.; Blanca, E. L. P. Y.; Petukhov, A. G. Phys. Rev. B 2000, 61, 16589. doi: 10.1103/PhysRevB.61.16589
-
[17]
(17) Bartnik, A.; Efros, A. L.; Koh,W. K.; Murray, C.;Wise, F. Phys. Rev. B 2010, 82, 195313. doi: 10.1103/PhysRevB.82.195313
-
[18]
(18) Isborn, C. M.; Kilina, S. V.; Li, X.; Prezhdo, O. V. J. Phys. Chem. C 2008, 112, 18291. doi: 10.1021/jp807283j
-
[19]
(19) Kamisaka, H.; Kilina, S. V.; Yamashita, K.; Prezhdo, O. V. J. Phys. Chem. C 2008, 112, 7800. doi: 10.1021/jp710435q
-
[20]
(20) Dolg, M.; Cao, X. Chem. Rev. 2011, 112, 403.
-
[21]
(21) Schwerdtfeger, P. ChemPhysChem 2011, 12, 3143. doi: 10.1002/cphc.201100387
-
[22]
(22) Balasubramanian, K. J. Phys. Chem. 1984, 88, 5759. doi: 10.1021/j150667a059
-
[23]
(23) Wang, L. S.; Niu, B.; Lee, Y. T.; Shirley, D.; Balasubramanian, K. J. Chem. Phys. 1990, 92, 899. doi: 10.1063/1.458124
-
[24]
(24) Jalbout, A. F.; Li, X. H.; Abou-Rachid, H. Int. J. Quantum Chem. 2007, 107, 522.
-
[25]
(25) Gauss, J. Encyclopedia of Computational Chemistry; Schleyer, P. V. R., Allinger, N. L., Clark, T., Gasteiger, J., Kollmann, P. A., Schaefer, H. F., Schreiner, P. R., Eds.;Wiley and Sons: New York, 1998; p 615.
-
[26]
(26) Bartlett, R. J.; MusiaB, M.Rev. Mod. Phys. 2007, 79, 291. doi: 10.1103/RevModPhys.79.291
-
[27]
(27) Raghavachari, K.; Trucks, G.W.; Pople, J. A.; Head- rdon, M. Chem. Phys. Lett. 1989, 157, 479. doi: 10.1016/S0009-2614(89)87395-6
-
[28]
(28) Tu, Z.;Wang, F.; Li, X. J. Chem. Phys. 2012, 136, 174102. doi: 10.1063/1.4704894
-
[29]
(29) Stanton, J. F.; Gauss, J. J. Chem. Phys. 1994, 101, 8938. doi: 10.1063/1.468022
-
[30]
(30) Wang, F.; Gauss, J.; van Wüllen, C. J. Chem. Phys. 2008, 129, 064113. doi: 10.1063/1.2968136
-
[31]
(31) Kim, I.; Park, Y. C.; Kim, H.; Lee, Y. S. Chem. Phys. 2012, 395, 115. doi: 10.1016/j.chemphys.2011.05.002
-
[32]
(32) Stanton, J. F.; Gauss, J. J. Chem. Phys. 1999, 111, 8785. doi: 10.1063/1.479673
-
[33]
(33) Manohar, P. U.; Stanton, J. F.; Krylov, A. I. J. Chem. Phys. 2009, 131, 114112. doi: 10.1063/1.3231133
-
[34]
(34) Purvis, G. D., III; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910. doi: 10.1063/1.443164
-
[35]
(35) Tu, Z.; Yang, D. D.;Wang, F.; Guo, J. J. Chem. Phys. 2011, 135, 034115. doi: 10.1063/1.3611052
-
[36]
(36) Wang, F.; Gauss, J. J. Chem. Phys. 2008, 129, 174110. doi: 10.1063/1.3000010
-
[37]
(37) Wang, F.; Gauss, J. J. Chem. Phys. 2009, 131, 164113. doi: 10.1063/1.3245954
-
[38]
(38) Stanton, J. F.; Bartlett, R. J. J. Chem. Phys. 1993, 98, 7029. doi: 10.1063/1.464746
-
[39]
(39) Yang, C. Y.; Rabii, S. J. Chem. Phys. 1978, 69, 2497. doi: 10.1063/1.436891
-
[40]
(40) Peterson, K. A.; Figgen, D.; ll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. 2003, 119, 11113. doi: 10.1063/1.1622924
-
[41]
(41) Metz, B.; Stoll, H.; Dolg, M. J. Chem. Phys. 2000, 113, 2563. doi: 10.1063/1.1305880
-
[42]
(42) Armbruster, M. K.; Klopper,W.;Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 4862. doi: 10.1039/b610211e
-
[43]
(43) Stanton, J. F.; Gauss, J.; Harding, M. E.; Szalay, P. G. with contributions from Auer, A. A.; Bartlett, R. J.; Benedikt, U.; Berger, C.; Bernholdt, D. E.; Bomble, Y. J.; Cheng, L.;C hristiansen, O.; Heckert, M.; Heun, O.; Huber, C.; Jagau, T. C.; Jonsson, D.; Jusélius, J.; Klein, K.; Lauderdale,W. J.; Matthews, D. A.; Metzroth, T.; Mück, L. A.; O’Neill, D. P.;P rice, D. R.; Prochnow, E.; Puzzarini, C.; Ruud, K.; Schiffmann, F.; Schwalbach,W.; Stopkowicz, S.; Tajti, A.; Vázquez, J.;Wang, F.;Watts, J. D. and the integral packagesM OLECULE (Almlöf, J.; Taylor, P. R.), PROPS (Taylor, P. R.), ABACUS (Helgaker, T.; Jensen, H. J. A.; Jørgensen, P.; Olsen, J.), and ECP routines by Mitin, A. V.; van Wüllen, C., CFOUR, Version1.2; For the current version, see http://www.cfour.de.
-
[44]
(44) Huber, K. P.; Herzberg, G. Spectroscopic Constants of Diatomics, 1st ed.; Van Nostrand Reinhold Company: New York, 1979; pp 528-530.
-
[45]
(45) Liang, Y. N.;Wang, F.; Guo, J. J. Chem. Phys. 2013, 138, 094319. doi: 10.1063/1.4792435
-
[1]
-
-
[1]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[2]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[3]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[4]
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
-
[5]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[6]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[7]
Simin Fang , Hong Wu , Wei Liu , Wei Wei , Hongyan Feng , Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053
-
[8]
Ming ZHENG , Yixiao ZHANG , Jian YANG , Pengfei GUAN , Xiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388
-
[9]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[10]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[11]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[12]
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
-
[13]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[14]
Yunxin Xu , Wenbo Zhang , Jing Yan , Wangchang Geng , Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008
-
[15]
Xiao Liu , Guangzhong Cao , Mingli Gao , Hong Wu , Hongyan Feng , Chenxiao Jiang , Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043
-
[16]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[17]
Haiying Jiang , Huilin Guo , Yongliang Cheng , Tongyu Xu , Jiquan Liu , Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091
-
[18]
Hongyao Li , Youyan Liu , Luwei Dai , Min Yang , Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104
-
[19]
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
-
[20]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[1]
Metrics
- PDF Downloads(554)
- Abstract views(697)
- HTML views(9)