Citation:
CAO Zhan-Li, WANG Zhi-Fan, YANG Ming-Li, WANG Fan. Theory Studies on Low-Lying States of Lead Chalcogenide Cations[J]. Acta Physico-Chimica Sinica,
;2014, 30(3): 431-438.
doi:
10.3866/PKU.WHXB201401023
-
In this work, we investigate the low-lying states of PbS, PbSe, and PbTe cations based on a recently developed equation-of-motion coupled-cluster approach for ionization potentials (EOMIP-CC) with spin-orbit coupling (SOC) at the CCSD level. Equilibrium bond lengths, harmonic frequencies as well as vertical and adiabatic ionization energies are calculated with EOMIP-SOC-CCSD and reasonable agreement with available experimental data is achieved. The contribution of triples is estimated by comparing results at the CCSD(T) level with those from EOMIP-CCSD when SOC is neglected. Better agreement with experimental data can be obtained if the contribution of triples is included. According to our results, the splitting between 2Π state is larger in PbTe+ than that in PbS+ and PbSe+, while coupling between 2Π1/2 and 2Σ1/2 owing to SOC is more significant in PbS+ and PbSe+. This is because the energy difference between 2Π and 2Σ+ states of PbTe+ is larger than that in PbS+ and PbSe+ and the SOC matrix element between 2Π1/2 and 2Σ1/2 states in PbTe+ is only half those in PbS+ and PbSe+. The present work presents new estimates on properties of these low-lying states and could serve as new references for future experiments.
-
-
-
[1]
(1) Cao, C. F.;Wu, H. Z.; Si, J. X.; Xu, T. N.; Chen, J.; Shen,W. Z. Acta Phys. Sin. 2006, 55, 2021. [曹春芳, 吴惠桢, 斯剑霄, 徐天宁, 陈静, 沈文忠. 物理学报, 2006, 55, 2021.]
-
[2]
(2) Lipovskii, A.; Kolobkova, E.; Petrikov, V.; Kang, I.; Olkhovets, A.; Krauss, T.; Thomas, M.; Silcox, J.;Wise, F.; Shen, Q. Appl. Phys. Lett. 1997, 71, 3406. doi: 10.1063/1.120349
-
[3]
(3) Feit, Z.; McDonald, M.;Woods, R.; Archambault, V.; Mak, P. Appl. Phys. Lett. 1996, 68, 738. doi: 10.1063/1.116726
-
[4]
(4) Krauss, T. D.;Wise, F.W.; Tanner, D. B. Phys. Rev. Lett. 1996, 76, 1376. doi: 10.1103/PhysRevLett.76.1376
-
[5]
(5) Schwarzl, T.; Heib,W.; Springholz, G. Appl. Phys. Lett. 1999, 75, 1246. doi: 10.1063/1.124656
-
[6]
(6) Giuliano, B. M.; Bizzocchi, L.; Cooke, S.; Banser, D.; Hess, M.; Fritzsche, J.; Grabow, J. U. Phys. Chem. Chem. Phys. 2008, 10, 2078. doi: 10.1039/b716896a
-
[7]
(7) Troparevsky, M. C.; Chelikowsky, J. R. J. Chem. Phys. 2001, 114, 943. doi: 10.1063/1.1329126
-
[8]
(8) Karamanis, P.; Maroulis, G.; Pouchan, C. J. Chem. Phys. 2006, 124, 071101. doi: 10.1063/1.2173236
-
[9]
(9) Wang, J.; Ma, L.; Zhao, J.; Jackson, K. A. J. Chem. Phys. 2009, 130, 214307. doi: 10.1063/1.3147519
-
[10]
(10) Sanville, E.; Burnin, A.; BelBruno, J. J. J. Phys. Chem. A 2006, 110, 2378. doi: 10.1021/jp056218v
-
[11]
(11) Zeng, H.; Schelly, Z. A.; Ueno-Noto, K.; Marynick, D. S. J. Phys. Chem. A 2005, 109, 1616. doi: 10.1021/jp040457l
-
[12]
(12) He, J.; Liu, C.; Li, F.; Sa, R.;Wu, K. Chem. Phys. Lett. 2008, 457, 163. doi: 10.1016/j.cplett.2008.03.085
-
[13]
(13) Koirala, P.; Kiran, B.; Kandalam, A. K.; Fancher, C. A.; de Clercq, H. L.; Li, X.; Bowen, K. H. J. Chem. Phys. 2011, 135, 134311. doi: 10.1063/1.3635406
-
[14]
(14) Zeng, Q.; Shi, J.; Jiang, G.; Yang, M.;Wang, F.; Chen, J. J. Chem. Phys. 2013, 139, 094305. doi: 10.1063/1.4819695
-
[15]
(15) Hummer, K.; Grüneis, A.; Kresse, G. Phys. Rev. B 2007, 75, 195211. doi: 10.1103/PhysRevB.75.195211
-
[16]
(16) Albanesi, E. A.; Okoye, C.; Rodriguez, C. M. I.; Blanca, E. L. P. Y.; Petukhov, A. G. Phys. Rev. B 2000, 61, 16589. doi: 10.1103/PhysRevB.61.16589
-
[17]
(17) Bartnik, A.; Efros, A. L.; Koh,W. K.; Murray, C.;Wise, F. Phys. Rev. B 2010, 82, 195313. doi: 10.1103/PhysRevB.82.195313
-
[18]
(18) Isborn, C. M.; Kilina, S. V.; Li, X.; Prezhdo, O. V. J. Phys. Chem. C 2008, 112, 18291. doi: 10.1021/jp807283j
-
[19]
(19) Kamisaka, H.; Kilina, S. V.; Yamashita, K.; Prezhdo, O. V. J. Phys. Chem. C 2008, 112, 7800. doi: 10.1021/jp710435q
-
[20]
(20) Dolg, M.; Cao, X. Chem. Rev. 2011, 112, 403.
-
[21]
(21) Schwerdtfeger, P. ChemPhysChem 2011, 12, 3143. doi: 10.1002/cphc.201100387
-
[22]
(22) Balasubramanian, K. J. Phys. Chem. 1984, 88, 5759. doi: 10.1021/j150667a059
-
[23]
(23) Wang, L. S.; Niu, B.; Lee, Y. T.; Shirley, D.; Balasubramanian, K. J. Chem. Phys. 1990, 92, 899. doi: 10.1063/1.458124
-
[24]
(24) Jalbout, A. F.; Li, X. H.; Abou-Rachid, H. Int. J. Quantum Chem. 2007, 107, 522.
-
[25]
(25) Gauss, J. Encyclopedia of Computational Chemistry; Schleyer, P. V. R., Allinger, N. L., Clark, T., Gasteiger, J., Kollmann, P. A., Schaefer, H. F., Schreiner, P. R., Eds.;Wiley and Sons: New York, 1998; p 615.
-
[26]
(26) Bartlett, R. J.; MusiaB, M.Rev. Mod. Phys. 2007, 79, 291. doi: 10.1103/RevModPhys.79.291
-
[27]
(27) Raghavachari, K.; Trucks, G.W.; Pople, J. A.; Head- rdon, M. Chem. Phys. Lett. 1989, 157, 479. doi: 10.1016/S0009-2614(89)87395-6
-
[28]
(28) Tu, Z.;Wang, F.; Li, X. J. Chem. Phys. 2012, 136, 174102. doi: 10.1063/1.4704894
-
[29]
(29) Stanton, J. F.; Gauss, J. J. Chem. Phys. 1994, 101, 8938. doi: 10.1063/1.468022
-
[30]
(30) Wang, F.; Gauss, J.; van Wüllen, C. J. Chem. Phys. 2008, 129, 064113. doi: 10.1063/1.2968136
-
[31]
(31) Kim, I.; Park, Y. C.; Kim, H.; Lee, Y. S. Chem. Phys. 2012, 395, 115. doi: 10.1016/j.chemphys.2011.05.002
-
[32]
(32) Stanton, J. F.; Gauss, J. J. Chem. Phys. 1999, 111, 8785. doi: 10.1063/1.479673
-
[33]
(33) Manohar, P. U.; Stanton, J. F.; Krylov, A. I. J. Chem. Phys. 2009, 131, 114112. doi: 10.1063/1.3231133
-
[34]
(34) Purvis, G. D., III; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910. doi: 10.1063/1.443164
-
[35]
(35) Tu, Z.; Yang, D. D.;Wang, F.; Guo, J. J. Chem. Phys. 2011, 135, 034115. doi: 10.1063/1.3611052
-
[36]
(36) Wang, F.; Gauss, J. J. Chem. Phys. 2008, 129, 174110. doi: 10.1063/1.3000010
-
[37]
(37) Wang, F.; Gauss, J. J. Chem. Phys. 2009, 131, 164113. doi: 10.1063/1.3245954
-
[38]
(38) Stanton, J. F.; Bartlett, R. J. J. Chem. Phys. 1993, 98, 7029. doi: 10.1063/1.464746
-
[39]
(39) Yang, C. Y.; Rabii, S. J. Chem. Phys. 1978, 69, 2497. doi: 10.1063/1.436891
-
[40]
(40) Peterson, K. A.; Figgen, D.; ll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. 2003, 119, 11113. doi: 10.1063/1.1622924
-
[41]
(41) Metz, B.; Stoll, H.; Dolg, M. J. Chem. Phys. 2000, 113, 2563. doi: 10.1063/1.1305880
-
[42]
(42) Armbruster, M. K.; Klopper,W.;Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 4862. doi: 10.1039/b610211e
-
[43]
(43) Stanton, J. F.; Gauss, J.; Harding, M. E.; Szalay, P. G. with contributions from Auer, A. A.; Bartlett, R. J.; Benedikt, U.; Berger, C.; Bernholdt, D. E.; Bomble, Y. J.; Cheng, L.;C hristiansen, O.; Heckert, M.; Heun, O.; Huber, C.; Jagau, T. C.; Jonsson, D.; Jusélius, J.; Klein, K.; Lauderdale,W. J.; Matthews, D. A.; Metzroth, T.; Mück, L. A.; O’Neill, D. P.;P rice, D. R.; Prochnow, E.; Puzzarini, C.; Ruud, K.; Schiffmann, F.; Schwalbach,W.; Stopkowicz, S.; Tajti, A.; Vázquez, J.;Wang, F.;Watts, J. D. and the integral packagesM OLECULE (Almlöf, J.; Taylor, P. R.), PROPS (Taylor, P. R.), ABACUS (Helgaker, T.; Jensen, H. J. A.; Jørgensen, P.; Olsen, J.), and ECP routines by Mitin, A. V.; van Wüllen, C., CFOUR, Version1.2; For the current version, see http://www.cfour.de.
-
[44]
(44) Huber, K. P.; Herzberg, G. Spectroscopic Constants of Diatomics, 1st ed.; Van Nostrand Reinhold Company: New York, 1979; pp 528-530.
-
[45]
(45) Liang, Y. N.;Wang, F.; Guo, J. J. Chem. Phys. 2013, 138, 094319. doi: 10.1063/1.4792435
-
[1]
-
-
-
[1]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[2]
Jiageng Li , Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098
-
[3]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[4]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[5]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[6]
Xingyuan Lu , Yutao Yao , Junjing Gu , Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074
-
[7]
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
-
[8]
Ming ZHENG , Yixiao ZHANG , Jian YANG , Pengfei GUAN , Xiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388
-
[9]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[10]
Simin Fang , Hong Wu , Wei Liu , Wei Wei , Hongyan Feng , Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053
-
[11]
Nan Xiao , Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099
-
[12]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[13]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[14]
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085
-
[15]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[16]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[17]
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
-
[18]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[19]
Dongdong Yao , JunweiGu , Yi Yan , Junliang Zhang , Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125
-
[20]
Yunxin Xu , Wenbo Zhang , Jing Yan , Wangchang Geng , Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008
-
[1]
Metrics
- PDF Downloads(554)
- Abstract views(797)
- HTML views(11)