Citation: CAO Zhan-Li, WANG Zhi-Fan, YANG Ming-Li, WANG Fan. Theory Studies on Low-Lying States of Lead Chalcogenide Cations[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 431-438. doi: 10.3866/PKU.WHXB201401023 shu

Theory Studies on Low-Lying States of Lead Chalcogenide Cations

  • Received Date: 2 December 2013
    Available Online: 2 January 2014

    Fund Project: 国家自然科学基金(21273155)资助项目 (21273155)

  • In this work, we investigate the low-lying states of PbS, PbSe, and PbTe cations based on a recently developed equation-of-motion coupled-cluster approach for ionization potentials (EOMIP-CC) with spin-orbit coupling (SOC) at the CCSD level. Equilibrium bond lengths, harmonic frequencies as well as vertical and adiabatic ionization energies are calculated with EOMIP-SOC-CCSD and reasonable agreement with available experimental data is achieved. The contribution of triples is estimated by comparing results at the CCSD(T) level with those from EOMIP-CCSD when SOC is neglected. Better agreement with experimental data can be obtained if the contribution of triples is included. According to our results, the splitting between 2Π state is larger in PbTe+ than that in PbS+ and PbSe+, while coupling between 2Π1/2 and 2Σ1/2 owing to SOC is more significant in PbS+ and PbSe+. This is because the energy difference between 2Π and 2Σ+ states of PbTe+ is larger than that in PbS+ and PbSe+ and the SOC matrix element between 2Π1/2 and 2Σ1/2 states in PbTe+ is only half those in PbS+ and PbSe+. The present work presents new estimates on properties of these low-lying states and could serve as new references for future experiments.

  • 加载中
    1. [1]

      (1) Cao, C. F.;Wu, H. Z.; Si, J. X.; Xu, T. N.; Chen, J.; Shen,W. Z. Acta Phys. Sin. 2006, 55, 2021. [曹春芳, 吴惠桢, 斯剑霄, 徐天宁, 陈静, 沈文忠. 物理学报, 2006, 55, 2021.]

    2. [2]

      (2) Lipovskii, A.; Kolobkova, E.; Petrikov, V.; Kang, I.; Olkhovets, A.; Krauss, T.; Thomas, M.; Silcox, J.;Wise, F.; Shen, Q. Appl. Phys. Lett. 1997, 71, 3406. doi: 10.1063/1.120349

    3. [3]

      (3) Feit, Z.; McDonald, M.;Woods, R.; Archambault, V.; Mak, P. Appl. Phys. Lett. 1996, 68, 738. doi: 10.1063/1.116726

    4. [4]

      (4) Krauss, T. D.;Wise, F.W.; Tanner, D. B. Phys. Rev. Lett. 1996, 76, 1376. doi: 10.1103/PhysRevLett.76.1376

    5. [5]

      (5) Schwarzl, T.; Heib,W.; Springholz, G. Appl. Phys. Lett. 1999, 75, 1246. doi: 10.1063/1.124656

    6. [6]

      (6) Giuliano, B. M.; Bizzocchi, L.; Cooke, S.; Banser, D.; Hess, M.; Fritzsche, J.; Grabow, J. U. Phys. Chem. Chem. Phys. 2008, 10, 2078. doi: 10.1039/b716896a

    7. [7]

      (7) Troparevsky, M. C.; Chelikowsky, J. R. J. Chem. Phys. 2001, 114, 943. doi: 10.1063/1.1329126

    8. [8]

      (8) Karamanis, P.; Maroulis, G.; Pouchan, C. J. Chem. Phys. 2006, 124, 071101. doi: 10.1063/1.2173236

    9. [9]

      (9) Wang, J.; Ma, L.; Zhao, J.; Jackson, K. A. J. Chem. Phys. 2009, 130, 214307. doi: 10.1063/1.3147519

    10. [10]

      (10) Sanville, E.; Burnin, A.; BelBruno, J. J. J. Phys. Chem. A 2006, 110, 2378. doi: 10.1021/jp056218v

    11. [11]

      (11) Zeng, H.; Schelly, Z. A.; Ueno-Noto, K.; Marynick, D. S. J. Phys. Chem. A 2005, 109, 1616. doi: 10.1021/jp040457l

    12. [12]

      (12) He, J.; Liu, C.; Li, F.; Sa, R.;Wu, K. Chem. Phys. Lett. 2008, 457, 163. doi: 10.1016/j.cplett.2008.03.085

    13. [13]

      (13) Koirala, P.; Kiran, B.; Kandalam, A. K.; Fancher, C. A.; de Clercq, H. L.; Li, X.; Bowen, K. H. J. Chem. Phys. 2011, 135, 134311. doi: 10.1063/1.3635406

    14. [14]

      (14) Zeng, Q.; Shi, J.; Jiang, G.; Yang, M.;Wang, F.; Chen, J. J. Chem. Phys. 2013, 139, 094305. doi: 10.1063/1.4819695

    15. [15]

      (15) Hummer, K.; Grüneis, A.; Kresse, G. Phys. Rev. B 2007, 75, 195211. doi: 10.1103/PhysRevB.75.195211

    16. [16]

      (16) Albanesi, E. A.; Okoye, C.; Rodriguez, C. M. I.; Blanca, E. L. P. Y.; Petukhov, A. G. Phys. Rev. B 2000, 61, 16589. doi: 10.1103/PhysRevB.61.16589

    17. [17]

      (17) Bartnik, A.; Efros, A. L.; Koh,W. K.; Murray, C.;Wise, F. Phys. Rev. B 2010, 82, 195313. doi: 10.1103/PhysRevB.82.195313

    18. [18]

      (18) Isborn, C. M.; Kilina, S. V.; Li, X.; Prezhdo, O. V. J. Phys. Chem. C 2008, 112, 18291. doi: 10.1021/jp807283j

    19. [19]

      (19) Kamisaka, H.; Kilina, S. V.; Yamashita, K.; Prezhdo, O. V. J. Phys. Chem. C 2008, 112, 7800. doi: 10.1021/jp710435q

    20. [20]

      (20) Dolg, M.; Cao, X. Chem. Rev. 2011, 112, 403.

    21. [21]

      (21) Schwerdtfeger, P. ChemPhysChem 2011, 12, 3143. doi: 10.1002/cphc.201100387

    22. [22]

      (22) Balasubramanian, K. J. Phys. Chem. 1984, 88, 5759. doi: 10.1021/j150667a059

    23. [23]

      (23) Wang, L. S.; Niu, B.; Lee, Y. T.; Shirley, D.; Balasubramanian, K. J. Chem. Phys. 1990, 92, 899. doi: 10.1063/1.458124

    24. [24]

      (24) Jalbout, A. F.; Li, X. H.; Abou-Rachid, H. Int. J. Quantum Chem. 2007, 107, 522.

    25. [25]

      (25) Gauss, J. Encyclopedia of Computational Chemistry; Schleyer, P. V. R., Allinger, N. L., Clark, T., Gasteiger, J., Kollmann, P. A., Schaefer, H. F., Schreiner, P. R., Eds.;Wiley and Sons: New York, 1998; p 615.

    26. [26]

      (26) Bartlett, R. J.; MusiaB, M.Rev. Mod. Phys. 2007, 79, 291. doi: 10.1103/RevModPhys.79.291

    27. [27]

      (27) Raghavachari, K.; Trucks, G.W.; Pople, J. A.; Head- rdon, M. Chem. Phys. Lett. 1989, 157, 479. doi: 10.1016/S0009-2614(89)87395-6

    28. [28]

      (28) Tu, Z.;Wang, F.; Li, X. J. Chem. Phys. 2012, 136, 174102. doi: 10.1063/1.4704894

    29. [29]

      (29) Stanton, J. F.; Gauss, J. J. Chem. Phys. 1994, 101, 8938. doi: 10.1063/1.468022

    30. [30]

      (30) Wang, F.; Gauss, J.; van Wüllen, C. J. Chem. Phys. 2008, 129, 064113. doi: 10.1063/1.2968136

    31. [31]

      (31) Kim, I.; Park, Y. C.; Kim, H.; Lee, Y. S. Chem. Phys. 2012, 395, 115. doi: 10.1016/j.chemphys.2011.05.002

    32. [32]

      (32) Stanton, J. F.; Gauss, J. J. Chem. Phys. 1999, 111, 8785. doi: 10.1063/1.479673

    33. [33]

      (33) Manohar, P. U.; Stanton, J. F.; Krylov, A. I. J. Chem. Phys. 2009, 131, 114112. doi: 10.1063/1.3231133

    34. [34]

      (34) Purvis, G. D., III; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910. doi: 10.1063/1.443164

    35. [35]

      (35) Tu, Z.; Yang, D. D.;Wang, F.; Guo, J. J. Chem. Phys. 2011, 135, 034115. doi: 10.1063/1.3611052

    36. [36]

      (36) Wang, F.; Gauss, J. J. Chem. Phys. 2008, 129, 174110. doi: 10.1063/1.3000010

    37. [37]

      (37) Wang, F.; Gauss, J. J. Chem. Phys. 2009, 131, 164113. doi: 10.1063/1.3245954

    38. [38]

      (38) Stanton, J. F.; Bartlett, R. J. J. Chem. Phys. 1993, 98, 7029. doi: 10.1063/1.464746

    39. [39]

      (39) Yang, C. Y.; Rabii, S. J. Chem. Phys. 1978, 69, 2497. doi: 10.1063/1.436891

    40. [40]

      (40) Peterson, K. A.; Figgen, D.; ll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. 2003, 119, 11113. doi: 10.1063/1.1622924

    41. [41]

      (41) Metz, B.; Stoll, H.; Dolg, M. J. Chem. Phys. 2000, 113, 2563. doi: 10.1063/1.1305880

    42. [42]

      (42) Armbruster, M. K.; Klopper,W.;Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 4862. doi: 10.1039/b610211e

    43. [43]

      (43) Stanton, J. F.; Gauss, J.; Harding, M. E.; Szalay, P. G. with contributions from Auer, A. A.; Bartlett, R. J.; Benedikt, U.; Berger, C.; Bernholdt, D. E.; Bomble, Y. J.; Cheng, L.;C hristiansen, O.; Heckert, M.; Heun, O.; Huber, C.; Jagau, T. C.; Jonsson, D.; Jusélius, J.; Klein, K.; Lauderdale,W. J.; Matthews, D. A.; Metzroth, T.; Mück, L. A.; O’Neill, D. P.;P rice, D. R.; Prochnow, E.; Puzzarini, C.; Ruud, K.; Schiffmann, F.; Schwalbach,W.; Stopkowicz, S.; Tajti, A.; Vázquez, J.;Wang, F.;Watts, J. D. and the integral packagesM OLECULE (Almlöf, J.; Taylor, P. R.), PROPS (Taylor, P. R.), ABACUS (Helgaker, T.; Jensen, H. J. A.; Jørgensen, P.; Olsen, J.), and ECP routines by Mitin, A. V.; van Wüllen, C., CFOUR, Version1.2; For the current version, see http://www.cfour.de.

    44. [44]

      (44) Huber, K. P.; Herzberg, G. Spectroscopic Constants of Diatomics, 1st ed.; Van Nostrand Reinhold Company: New York, 1979; pp 528-530.

    45. [45]

      (45) Liang, Y. N.;Wang, F.; Guo, J. J. Chem. Phys. 2013, 138, 094319. doi: 10.1063/1.4792435


  • 加载中
    1. [1]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    4. [4]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    5. [5]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    6. [6]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    7. [7]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    8. [8]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    9. [9]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    10. [10]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    11. [11]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    13. [13]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    14. [14]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    15. [15]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    16. [16]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    17. [17]

      Haiying Jiang Huilin Guo Yongliang Cheng Tongyu Xu Jiquan Liu Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091

    18. [18]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    19. [19]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(554)
  • Abstract views(696)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return