Citation: GAO Su-Wen, LAN Zhang, WU Wan-Xia, QUE Lan-Fang, WU Ji-Huai, LIN Jian-Ming, HUANG Miao-Liang. Fabrication and Photovoltaic Performance of High Efficiency Front-Illuminated Dye-Sensitized Solar Cell Based on Ordered TiO2 Nanotube Arrays[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 446-452. doi: 10.3866/PKU.WHXB201401022
-
An efficient front-illuminated dye-sensitized solar cell (DSSC) based on ordered TiO2 nanotube (TNT) arrays was prepared. Sintering at 450 ℃ avoided damage of the ordered TNTs during HF treatment. Fast electron transport channels were maintained in the membrane, for efficient charge transportat in the DSSC. The sintered TNT membranes were subsequently treated with HF, TiCl4, and HF combined with TiCl4. This formed a rougher surface, and allowed increased dye loadings. The increased dye loading improved the light harvesting efficiency of the photoanode at 300-570 nm wavelength range, which is the main absorption region of the adsorbed dye. The adsorbed dye had a low absorption at 570-800 nm wavelength range. The enhanced light harvesting efficiency of the photoanode originated from its increased diffuse reflectance. The incident-photon-to-current and absorbed-photon-to-current conversion efficiencies were increased over the entire 300-800 nm wavelength range. This resulted in an increased short-circuit current density of the DSSC. Electrochemical impedance spectroscopy indicated that electron transport and related parameters including charge transport resistance, interfacial charge recombination resistance, distributed chemical capacitance, electron lifetime, effective electron diffusion length, and collection efficiency were significantly improved in the DSSC containing the treated TNT photoanode. This also resulted in an enhanced photovoltaic performance. The maximum power conversion efficiency from combining HF and TiCl4 treatments was 7.30%, which was a 35.69% enhancement compared with the nontreated DSSC (5.38%).
-
Keywords:
-
TiO2 nanotube array
, - Dye-sensitized solar cell,
- Photoanode,
- HF,
- TiCl4
-
-
-
[1]
(1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0
-
[2]
(2) Bella, F.; Bongiovanni, R.; Kumar, R. S.; Kulandainathan, M. A.; Stephanc, A. M. J. Mater. Chem. A 2013, 1, 9033. doi: 10.1039/c3ta12135f
-
[3]
(3) Xin, X.; He, M.; Han,W.; Jung, J.; Lin, Z. Angew. Chem. Int. Edit. 2011, 50, 11739. doi: 10.1002/anie.201104786
-
[4]
(4) Grätzel, M. Nature 2001, 414, 338. doi: 10.1038/35104607
-
[5]
(5) Shu,W.; Liu, Y.; Peng, Z.; Chen, K.; Zhang, C.; Chen,W. J. Alloy. Compd. 2013, 563, 229. doi: 10.1016/j.jallcom.2013.02.086
-
[6]
(6) Frank, J.; Kopidakis, N.; Lagemaat, J. Coord. Chem. Rev. 2004, 248, 1165. doi: 10.1016/j.ccr.2004.03.015
-
[7]
(7) (a) Liu, R. H.; Zhang, S.; Xia, X. Y.; Yun, D. Q.; Bian, Z. Q.; Zhao, Y. L. Acta Phys. -Chim. Sin. 2011, 27, 1701. [刘润花, 张森, 夏新元, 云大钦, 卞祖强, 赵永亮. 物理化学学报, 2011, 27, 1701.] doi: 10.3866/PKU.WHXB20110734
-
[8]
(b) Lan, Z.;Wu, J. H.; Lin, J. M.; Huang, M. L. J. Inorg. Mater. 2011, 26, 119. [兰章, 吴季怀, 林建明, 黄妙良. 无机材料学报, 2011, 26, 119.]
-
[9]
(8) (a) Xiao, Y. M.;Wu, J. H.; Yue, G. T.; Lin, J. M.; Huang, M. L.; Fan, L. Q.; Lan, Z. Acta Phys. -Chim. Sin. 2012, 28, 578. [肖尧明, 吴季怀, 岳根田, 林建明, 黄妙良, 范乐庆, 兰章. 物理化学学报, 2012, 28, 578.] doi: 10.3866/PKU.WHXB201201032
-
[10]
(b) Feng, X.; Shankar, K.; Varghese, O. K.; Paulose, M. T.; Latempa, J.; Grimes, C. A. Nano Lett. 2008, 8, 3781.
-
[11]
(9) (a) Zhang, Z. Y.; Sang, L. X.; Sun, B.; Zhang, X. M.; Ma, C. F. Acta Phys. -Chim. Sin. 2010, 26, 2935. [张知宇, 桑丽霞, 孙彪, 张晓敏, 马重芳. 物理化学学报, 2010, 26, 2935.] doi: 10.3866/PKU.WHXB20101131
-
[12]
(b) Hyeokapark, J.; Guakang, M. Chem. Commun. 2008, 2867. (10) (a) Li, H. H.; Chen, R. F.; Ma, Z.; Zhang, S. L.; An, Z. F.; Huang,W. Acta Phys. -Chim. Sin. 2011, 27, 1017. [李欢欢,陈润锋, 马琮, 张胜兰, 安众福, 黄维. 物理化学学报, 2011, 27, 1017.] doi: 10.3866/PKU.WHXB20110514
-
[13]
(b) Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, G. A. Nano Lett. 2006, 6, 215.
-
[14]
(11) Jun, Y.; Park, J. H.; Kang, M. G. Chem. Commun. 2012, 48, 6456. doi: 10.1039/c2cc30733b
-
[15]
(12) (a) Su, Y. L.; Li, Y.; Du, Y. X.; Lei, L. C. Acta Phys. -Chim. Sin. 2011, 27, 939. [苏雅玲, 李轶, 杜瑛珣, 雷乐成. 物理化学学报, 2011, 27, 939.] doi: 10.3866/PKU.WHXB20110401
-
[16]
(b) Chang,W. T.; Hsueh, Y. C.; Huang, S. H.; Liu, K. I.; Kei, C. C.; Perng, T. P. J. Mater. Chem. A 2013, 1, 1987.
-
[17]
(13) Zhang, Z.;Wang, P. Energy Environ. Sci. 2012, 5, 6506. doi: 10.1039/c2ee03461a
-
[18]
(14) Kuang, D.; Brillet, J.; Chen, P.; Takata, M.; Uchida, S.; Miura, H.; Sumioka, K.; Zakeeruddin, S. M.; Grätzel, M. ACS Nano 2008, 2, 1113. doi: 10.1021/nn800174y
-
[19]
(15) Zhang, T.; Hu, X.; Fang, M.; Zhang, L.;Wang, Z. CrystEngComm 2012, 14, 7656. doi: 10.1039/c2ce25323b
-
[20]
(16) Tao, L.; Xiong, Y.; Liu, H.; Shen,W. J. Mater. Chem. 2012, 22, 7863. doi: 10.1039/c2jm00005a
-
[21]
(17) Lan, Z.;Wu, J. H.; Lin, J. M.; Huang, M. L. J. Mater. Chem. 2011, 21, 15552. doi: 10.1039/c1jm12812d
-
[22]
(18) Lan, Z.;Wu, J. H.; Lin, J. M.; Huang, M. L. J. Mater. Chem. 2012, 22, 3948. doi: 10.1039/c2jm15019k
-
[23]
(19) Wang, Q.; Moser, J. E.; Grätzel, M. J. Phys. Chem. B 2005, 109, 14945. doi: 10.1021/jp052768h
-
[24]
(20) Lan, Z.;Wu, J. H.; Lin, J. M.; Huang, M. L. J. Mater. Sci.: Mater. Electron. 2010, 21, 833. doi: 10.1007/s10854-009-0003-4
-
[25]
(21) Choi, J.; Park, S. H.; Kwon, Y. S.; Lim, J.; Song, I. Y.; Park, T. Chem. Commun. 2012, 48, 8748. doi: 10.1039/c2cc33629d
-
[26]
(22) Yip, C. T.; Guo, M.; Huang, H.; Zhou, L.;Wang, Y.; Huang, C. Nanoscale 2012, 4, 448. doi: 10.1039/c2nr11317a
-
[27]
(23) Huang, F.; Chen, D.; Zhang, X. L.; Caruso, R. A.; Cheng, Y. B. Adv. Funct. Mater. 2010, 20, 1301. doi: 10.1002/adfm.v20:8
-
[28]
(24) Yanagida, M.; Yamaguchi, T.; Kurashige, M.; Hara, K.; Katoh, R.; Sugihara, H.; Arakawa, H. Inorg. Chem. 2003, 42, 7921. doi: 10.1021/ic034674x
-
[29]
(25) Wang, Z. S.; Li, F. Y.; Huang, C. H. J. Phys. Chem. B 2001, 105, 9210. doi: 10.1021/jp010667n
-
[30]
(26) Bisquert, J.; Belmonte, G. G.; Santia , F. F.; Ferriols, N. S.; Bogdanoff, P.; Pereira, E. C. J. Phys. Chem. B 2000, 104, 2287. doi: 10.1021/jp993148h
-
[1]
-
-
[1]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[2]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[3]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[4]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[5]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[6]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[7]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[8]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[9]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[10]
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
-
[11]
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
-
[12]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[13]
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
-
[14]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[15]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[16]
Xiaxue Chen , Yuxuan Yang , Ruolin Yang , Yizhu Wang , Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019
-
[17]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[18]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[19]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[20]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[1]
Metrics
- PDF Downloads(719)
- Abstract views(800)
- HTML views(6)