Citation: GAO Su-Wen, LAN Zhang, WU Wan-Xia, QUE Lan-Fang, WU Ji-Huai, LIN Jian-Ming, HUANG Miao-Liang. Fabrication and Photovoltaic Performance of High Efficiency Front-Illuminated Dye-Sensitized Solar Cell Based on Ordered TiO2 Nanotube Arrays[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 446-452. doi: 10.3866/PKU.WHXB201401022 shu

Fabrication and Photovoltaic Performance of High Efficiency Front-Illuminated Dye-Sensitized Solar Cell Based on Ordered TiO2 Nanotube Arrays

  • Received Date: 15 November 2013
    Available Online: 2 January 2014

    Fund Project: 国家自然科学基金(U1205112,51002053),教育部科技重点项目(212206),福建省高校杰出青年研究人才计划项目,福建省高校新世纪优秀人才支持计划项目和华侨大学中青年教师科研提升资助计划(ZQN-YX102)资助 (U1205112,51002053),教育部科技重点项目(212206),福建省高校杰出青年研究人才计划项目,福建省高校新世纪优秀人才支持计划项目和华侨大学中青年教师科研提升资助计划(ZQN-YX102)

  • An efficient front-illuminated dye-sensitized solar cell (DSSC) based on ordered TiO2 nanotube (TNT) arrays was prepared. Sintering at 450 ℃ avoided damage of the ordered TNTs during HF treatment. Fast electron transport channels were maintained in the membrane, for efficient charge transportat in the DSSC. The sintered TNT membranes were subsequently treated with HF, TiCl4, and HF combined with TiCl4. This formed a rougher surface, and allowed increased dye loadings. The increased dye loading improved the light harvesting efficiency of the photoanode at 300-570 nm wavelength range, which is the main absorption region of the adsorbed dye. The adsorbed dye had a low absorption at 570-800 nm wavelength range. The enhanced light harvesting efficiency of the photoanode originated from its increased diffuse reflectance. The incident-photon-to-current and absorbed-photon-to-current conversion efficiencies were increased over the entire 300-800 nm wavelength range. This resulted in an increased short-circuit current density of the DSSC. Electrochemical impedance spectroscopy indicated that electron transport and related parameters including charge transport resistance, interfacial charge recombination resistance, distributed chemical capacitance, electron lifetime, effective electron diffusion length, and collection efficiency were significantly improved in the DSSC containing the treated TNT photoanode. This also resulted in an enhanced photovoltaic performance. The maximum power conversion efficiency from combining HF and TiCl4 treatments was 7.30%, which was a 35.69% enhancement compared with the nontreated DSSC (5.38%).

  • 加载中
    1. [1]

      (1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0

    2. [2]

      (2) Bella, F.; Bongiovanni, R.; Kumar, R. S.; Kulandainathan, M. A.; Stephanc, A. M. J. Mater. Chem. A 2013, 1, 9033. doi: 10.1039/c3ta12135f

    3. [3]

      (3) Xin, X.; He, M.; Han,W.; Jung, J.; Lin, Z. Angew. Chem. Int. Edit. 2011, 50, 11739. doi: 10.1002/anie.201104786

    4. [4]

      (4) Grätzel, M. Nature 2001, 414, 338. doi: 10.1038/35104607

    5. [5]

      (5) Shu,W.; Liu, Y.; Peng, Z.; Chen, K.; Zhang, C.; Chen,W. J. Alloy. Compd. 2013, 563, 229. doi: 10.1016/j.jallcom.2013.02.086

    6. [6]

      (6) Frank, J.; Kopidakis, N.; Lagemaat, J. Coord. Chem. Rev. 2004, 248, 1165. doi: 10.1016/j.ccr.2004.03.015

    7. [7]

      (7) (a) Liu, R. H.; Zhang, S.; Xia, X. Y.; Yun, D. Q.; Bian, Z. Q.; Zhao, Y. L. Acta Phys. -Chim. Sin. 2011, 27, 1701. [刘润花, 张森, 夏新元, 云大钦, 卞祖强, 赵永亮. 物理化学学报, 2011, 27, 1701.] doi: 10.3866/PKU.WHXB20110734

    8. [8]

      (b) Lan, Z.;Wu, J. H.; Lin, J. M.; Huang, M. L. J. Inorg. Mater. 2011, 26, 119. [兰章, 吴季怀, 林建明, 黄妙良. 无机材料学报, 2011, 26, 119.]

    9. [9]

      (8) (a) Xiao, Y. M.;Wu, J. H.; Yue, G. T.; Lin, J. M.; Huang, M. L.; Fan, L. Q.; Lan, Z. Acta Phys. -Chim. Sin. 2012, 28, 578. [肖尧明, 吴季怀, 岳根田, 林建明, 黄妙良, 范乐庆, 兰章. 物理化学学报, 2012, 28, 578.] doi: 10.3866/PKU.WHXB201201032

    10. [10]

      (b) Feng, X.; Shankar, K.; Varghese, O. K.; Paulose, M. T.; Latempa, J.; Grimes, C. A. Nano Lett. 2008, 8, 3781.

    11. [11]

      (9) (a) Zhang, Z. Y.; Sang, L. X.; Sun, B.; Zhang, X. M.; Ma, C. F. Acta Phys. -Chim. Sin. 2010, 26, 2935. [张知宇, 桑丽霞, 孙彪, 张晓敏, 马重芳. 物理化学学报, 2010, 26, 2935.] doi: 10.3866/PKU.WHXB20101131

    12. [12]

      (b) Hyeokapark, J.; Guakang, M. Chem. Commun. 2008, 2867. (10) (a) Li, H. H.; Chen, R. F.; Ma, Z.; Zhang, S. L.; An, Z. F.; Huang,W. Acta Phys. -Chim. Sin. 2011, 27, 1017. [李欢欢,陈润锋, 马琮, 张胜兰, 安众福, 黄维. 物理化学学报, 2011, 27, 1017.] doi: 10.3866/PKU.WHXB20110514

    13. [13]

      (b) Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, G. A. Nano Lett. 2006, 6, 215.

    14. [14]

      (11) Jun, Y.; Park, J. H.; Kang, M. G. Chem. Commun. 2012, 48, 6456. doi: 10.1039/c2cc30733b

    15. [15]

      (12) (a) Su, Y. L.; Li, Y.; Du, Y. X.; Lei, L. C. Acta Phys. -Chim. Sin. 2011, 27, 939. [苏雅玲, 李轶, 杜瑛珣, 雷乐成. 物理化学学报, 2011, 27, 939.] doi: 10.3866/PKU.WHXB20110401

    16. [16]

      (b) Chang,W. T.; Hsueh, Y. C.; Huang, S. H.; Liu, K. I.; Kei, C. C.; Perng, T. P. J. Mater. Chem. A 2013, 1, 1987.

    17. [17]

      (13) Zhang, Z.;Wang, P. Energy Environ. Sci. 2012, 5, 6506. doi: 10.1039/c2ee03461a

    18. [18]

      (14) Kuang, D.; Brillet, J.; Chen, P.; Takata, M.; Uchida, S.; Miura, H.; Sumioka, K.; Zakeeruddin, S. M.; Grätzel, M. ACS Nano 2008, 2, 1113. doi: 10.1021/nn800174y

    19. [19]

      (15) Zhang, T.; Hu, X.; Fang, M.; Zhang, L.;Wang, Z. CrystEngComm 2012, 14, 7656. doi: 10.1039/c2ce25323b

    20. [20]

      (16) Tao, L.; Xiong, Y.; Liu, H.; Shen,W. J. Mater. Chem. 2012, 22, 7863. doi: 10.1039/c2jm00005a

    21. [21]

      (17) Lan, Z.;Wu, J. H.; Lin, J. M.; Huang, M. L. J. Mater. Chem. 2011, 21, 15552. doi: 10.1039/c1jm12812d

    22. [22]

      (18) Lan, Z.;Wu, J. H.; Lin, J. M.; Huang, M. L. J. Mater. Chem. 2012, 22, 3948. doi: 10.1039/c2jm15019k

    23. [23]

      (19) Wang, Q.; Moser, J. E.; Grätzel, M. J. Phys. Chem. B 2005, 109, 14945. doi: 10.1021/jp052768h

    24. [24]

      (20) Lan, Z.;Wu, J. H.; Lin, J. M.; Huang, M. L. J. Mater. Sci.: Mater. Electron. 2010, 21, 833. doi: 10.1007/s10854-009-0003-4

    25. [25]

      (21) Choi, J.; Park, S. H.; Kwon, Y. S.; Lim, J.; Song, I. Y.; Park, T. Chem. Commun. 2012, 48, 8748. doi: 10.1039/c2cc33629d

    26. [26]

      (22) Yip, C. T.; Guo, M.; Huang, H.; Zhou, L.;Wang, Y.; Huang, C. Nanoscale 2012, 4, 448. doi: 10.1039/c2nr11317a

    27. [27]

      (23) Huang, F.; Chen, D.; Zhang, X. L.; Caruso, R. A.; Cheng, Y. B. Adv. Funct. Mater. 2010, 20, 1301. doi: 10.1002/adfm.v20:8

    28. [28]

      (24) Yanagida, M.; Yamaguchi, T.; Kurashige, M.; Hara, K.; Katoh, R.; Sugihara, H.; Arakawa, H. Inorg. Chem. 2003, 42, 7921. doi: 10.1021/ic034674x

    29. [29]

      (25) Wang, Z. S.; Li, F. Y.; Huang, C. H. J. Phys. Chem. B 2001, 105, 9210. doi: 10.1021/jp010667n

    30. [30]

      (26) Bisquert, J.; Belmonte, G. G.; Santia , F. F.; Ferriols, N. S.; Bogdanoff, P.; Pereira, E. C. J. Phys. Chem. B 2000, 104, 2287. doi: 10.1021/jp993148h


  • 加载中
    1. [1]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    2. [2]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    3. [3]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    4. [4]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    5. [5]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    6. [6]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    7. [7]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    11. [11]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    12. [12]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    13. [13]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    16. [16]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    17. [17]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    18. [18]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    19. [19]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    20. [20]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

Metrics
  • PDF Downloads(719)
  • Abstract views(800)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return