Citation: SHENG Jia-Yi, LI Xiao-Jin, XU Yi-Ming. Effect of Sintering Temperature on the Photocatalytic Activity of Flower-Like Bi2WO6[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 508-512. doi: 10.3866/PKU.WHXB201312302
-
Bi2WO6 is reportedly active for the photocatalytic degradation of organic compounds in aerated aqueous solution, but factors influencing the photocatalytic activity of pristine Bi2WO6 have received little attention. In this study, the effect of sintering temperature on the physical properties of flower-like Bi2WO6 was investigated. The catalyst was synthesized through the hydrothermal reaction of Na2WO4 and Bi(NO3)3 at 160 ℃ for 20 h, followed by sintering in air at different temperatures for 3 h. Bi2WO6 samples were characterized with X-ray diffraction, scanning electron microscopy, and Raman, ultraviolet-visible diffuse reflectance, and photoluminescence spectroscopies. All samples had similar phase compositions and electronic structures. Samples exhibited different activities for the photocatalytic degradation of phenol in aerated aqueous solution, under ultraviolet light. With increasing Bi2WO6 sintering temperature, the rate of phenol degradation first increased and then decreased. The maximum rate of phenol degradation was observed from the catalyst sintered at 350 ℃. Similar results were obtained when the rate of phenol degradation was normalized with the specific surface area of the catalyst, as determined by N2 adsorption. The observed sintering temperature-dependent photoactivity of Bi2WO6 was attributed to a combination of its crystallinity, light absorption, and surface defects.
-
Keywords:
-
Bismuth tungstate
, - Semiconductor,
- Photocatalysis,
- Phenol,
- Degradation
-
-
-
[1]
(1) Zhang, A. P.; Zhang, J. Z. Acta Phys. -Chim. Sin. 2010, 26, 1337. [张爱平, 张进治. 物理化学学报, 2010, 26, 1337.] doi: 10.3866/PKU.WHXB20100533
-
[2]
(2) Lin, X.; Lü, P.; Guan, Q. F.; Li, H. B.; Li, H. J.; Cai, J.; Zou, Y. Acta Phys. -Chim. Sin. 2012, 28, 1978. [林雪, 吕鹏, 关庆丰, 李海波, 李洪吉, 蔡杰, 邹阳. 物理化学学报, 2012, 28, 1978.] doi: 10.3866/PKU.WHXB201205172
-
[3]
(3) Liu, Y. F.; Ma, X. G.; Yi, X.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2012, 28, 654. [刘艳芳, 马新国, 易欣, 朱永法. 物理化学学报, 2012, 28, 654.] doi: 10.3866/PKU.WHXB201112232
-
[4]
(4) Zhang, L.;Wang, H.; Chen, Z.;Wong, P. K.; Liu, J. Appl. Catal. B: Environ. 2011, 106, 1.
-
[5]
(5) Zhang, L.; Zhu, Y. Catal. Sci. Technol. 2012, 2, 694. doi: 10.1039/c2cy00411a
-
[6]
(6) Kudo, A.; Hijii, S. Chem. Lett. 1999, 10, 1103.
-
[7]
(7) Shang, M.;Wang,W.; Sun, S.; Zhou, L.; Zhang, L. J. Phys. Chem. C 2008, 112, 10407. doi: 10.1021/jp802115w
-
[8]
(8) Shang, M.;Wang,W.; Xu, H. Cryst. Growth Des. 2009, 9, 991. doi: 10.1021/cg800799a
-
[9]
(9) Shang, M.;Wang,W.; Ren, J.; Sun, S.;Wang, L.; Zhou, L. J. Mater. Chem. 2009, 19, 6213. doi: 10.1039/b907849e
-
[10]
(10) Amano, F.; Nogami, K.; Abe, R.; Ohtani, B. J. Phys. Chem. C 2008, 112, 9320. doi: 10.1021/jp801861r
-
[11]
(11) Zhang, L.;Wang,W.; Chen, Z.; Zhou, L.; Xu, H.; Zhu,W. J. Mater. Chem. 2007, 17, 2526. doi: 10.1039/b616460a
-
[12]
(12) Shi, R.; Huang, G.; Lin, J.; Zhu, Y. J. Phys. Chem. C 2009, 113, 19633. doi: 10.1021/jp906680e
-
[13]
(13) Fu, H.; Zhang, S.; Xu, T.; Zhu, Y.; Chen, J. Environ. Sci. Technol. 2008, 42, 2085. doi: 10.1021/es702495w
-
[14]
(14) Guo, S.; Li, X.;Wang, H.; Dong, F.;Wu, Z. J. Colloid Interface Sci. 2012, 369, 373. doi: 10.1016/j.jcis.2011.12.007
-
[15]
(15) Duan, F.; Zheng, Y.; Chen, M. Appl. Sci. Res. 2011, 257, 1972.
-
[16]
(16) Zhou, L.; Yu, M.; Yang, J.;Wang, Y.; Yu, C. J. Phys. Chem. C 2010, 114, 18812. doi: 10.1021/jp107061p
-
[17]
(17) Song, X. C.; Zheng, Y. F.; Ma, R.; Zhang, Y. Y.; Yin, H. Y. J. Hazard. Mater. 2011, 192, 186.
-
[18]
(18) Zhang, L.; Man, Y.; Zhu, Y. ACS Catal. 2011, 1, 841. doi: 10.1021/cs200155z
-
[19]
(19) Amano, F.; Yamakata, A.; Nogami, K.; Osawa, M.; Ohtani, B. J. Phys. Chem. C 2011, 115, 16598. doi: 10.1021/jp2051257
-
[20]
(20) Fu, H.; Zhang, L.; Yao,W.; Zhu, Y. Appl. Catal. B 2006, 66, 100. doi: 10.1016/j.apcatb.2006.02.022
-
[21]
(21) Zhang, C.; Zhu, Y. Chem. Mater. 2005, 17, 3537. doi: 10.1021/cm0501517
-
[22]
(22) Amano, F.; Nogami, K.; Ohtani, B. J. Phys. Chem. C 2009, 113, 1536. doi: 10.1021/jp808685m
-
[23]
(23) Chakrabarti, S.; Ganguli, D.; Chaudhuri, S. Physica E 2004, 24, 333.
-
[24]
(24) Maczka, M.; Macalik, L.; Hermanowicz, K.; KepiDski, L.; Tomaszewski, P. J. Raman Spectrosc. 2010, 41, 1059.
-
[25]
(25) Graves, P. R.; Hua, G.; Myhra, S.; Thompson, J. G. J. Solid State Chem. 1995, 114, 112. doi: 10.1006/jssc.1995.1017
-
[26]
(26) Bordun, O. M. Inorg. Mater. 1998, 34, 1270.
-
[1]
-
-
[1]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[2]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[3]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[4]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[5]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[6]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[7]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[8]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[9]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[10]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[11]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[12]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[13]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[14]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[15]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[16]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[17]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[18]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[19]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[20]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[1]
Metrics
- PDF Downloads(668)
- Abstract views(886)
- HTML views(8)