Citation: ZHONG Xiao-Cong, GUI Jun-Feng, YU Xiao-Ying, LIU Fang-Yang, JIANG Liang-Xing, LAI Yan-Qing, LI Jie, LIU Ye-Xiang. Influence of Alloying Element Nd on the Electrochemical Behavior of Pb-Ag Anode in H2SO4 Solution[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 492-499. doi: 10.3866/PKU.WHXB201312301
-
Anodic layers and oxygen evolution reaction (OER) of Pb-Ag and Pb-Ag-Nd anodes were investigated by cyclic voltammetry, linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and environmental scanning electron microscopy (ESEM). Alloying with Nd promoted the formation of Pb/PbOn/PbSO4 (1≤n<2). Nd facilitated the transformation of PbOn and PbSO4 to α-PbO2 and β-PbO2, at potential above 1.2 V vs Hg/Hg2SO4 (saturated K2SO4 solution). ESEM and LSV indicated that the anodic layer formed on the Pb-Ag-Nd anode was thicker and more compact than that formed on the Pb-Ag anode. Consequently, the anodic layer on the Pb-Ag-Nd anode could provide better protection for metallic substrates. EIS indicated that the OER was determined by the formation and adsorption of intermediates. Nd enhanced the OER reactivity, because of a smaller adsorption resistance and larger coverage of intermediates at the anodic layer/electrolyte interface. In summary, alloying with Nd can enhance the corrosion resistance and reduce the energy consumption of Pb-Ag anode due to lower anodic potential.
-
-
[1]
(1) (a) Lai, Y. Q.; Jiang, L. X.; Li, J.; Zhong, S. P.; Lv, X. J.; Peng, H. Z.; Liu, Y. X. Hydrometallurgy 2010, 102 (1-4), 73. doi: 10.1016/j.hydromet.2010.02.012
-
[2]
(b) Newnham, R. H. J. Appl. Electrochem. 1992, 22 (2), 116.
-
[3]
(c) Petrova, M.; Noncheva, Z.; Dobrev, T.; Rashkov, Kunchev, N.; Petrov, D.; Vlaev, S.; Mihnev, V.; Zarev, S. Hydrometallurgy 1996, 40 (3), 319. doi: 10.1016/0304-386X(95)00010-E
-
[4]
(4) Clancy, M.; Bettles, C. J.; Stuart, A.; Birbilis, N. Hydrometallurgy 2013, 131-132, 144.
-
[5]
(5) Hong, B.; Jiang, L. X.; Lv, X. J.; Ni, H. F.; Lai, Y. Q.; Li, J.; Liu, Y. X. T. Nonferr. Metal Soc. 2012, 22 (4), 1126. [洪波, 蒋良兴, 吕晓军, 倪恒发, 赖延清, 李劼, 刘业翔. 中国有色金属学报, 2012, 22 (4), 1126.]
-
[6]
(6) (a) Pavlov, D.; Poulieff, C.; Klaja, E.; Iordanov, N. J. Electrochem. Soc. 1969, 116, 316. doi: 10.1149/1.2411836
-
[7]
(b) Monahov, B.; Pavlov, D. J. Appl. Electrochem. 1993, 23 (12), 1244.
-
[8]
(c) Ho, J.; Simpraga, R.; Conway, B. J. Electroanal. Chem. 1994, 366 (1), 147.
-
[9]
(d) Li, H.; Guo,W. X.; Chen, H. Y.; Finlow, D. E.; Zhou, H.W.; Dou, C. L.; Xiao, G. M.; Peng, S. G.;Wei,W.W.;Wang, H. J. Power Sources 2009, 191 (1), 111.
-
[10]
(7) Burbank, J. J. Electrochem. Soc. 1959, 106, 369. doi: 10.1149/1.2427362
-
[11]
(8) (a) Babi , R.; Metiko -Hukovi , M.; Lajqy, N.; Brini , S. J. Power Sources 1994, 52 (1), 17. doi: 10.1016/0378-7753(94)01925-8
-
[12]
(b) Dobrev, T.; Valchanova, I.; Stefanov, Y.; Magaeva, S. Trans. Inst. Met. Finish. 2009, 87 (3), 136.
-
[13]
(c) Ijomah, M. J. Electrochem. Soc. 1987, 134 (12), 2960.
-
[14]
(d) Buchanan, J.; Peter, L. Electrochim. Acta 1988, 33 (1), 127.
-
[15]
(e) Ijomah, M. J. Appl. Electrochem. 1988, 18 (1), 142.
-
[16]
(f) Varela, F.; Gassa, L.; Vilche, J. Electrochim. Acta 1992, 37 (6), 1119.
-
[17]
(9) Sharpe, T. F. J. Electrochem. Soc. 1977, 124 (2), 168. doi: 10.1149/1.2133259
-
[18]
(10) Czerwinski, A.; Zelazowska, M.; Grden, M.; Kuc, K.; Milewski, J.; Nowacki, A.;Wojcik, G.; Kopczyk, M. J. Power Sources 2000, 85 (1), 49. doi: 10.1016/S0378-7753(99)00381-X
-
[19]
(11) Guo, Y. L. J. Electrochem. Soc. 1991, 138 (5), 1222. doi: 10.1149/1.2085763
-
[20]
(12) Sun, Q. J.; Guo, Y. L. J. Electroanal. Chem. 2000, 493 (1), 123.
-
[21]
(13) Hu, J. M.; Zhang, J. Q.; Cao, C. N. Int. J. Hydrog. Energy 2004, 29 (8), 791. doi: 10.1016/j.ijhydene.2003.09.007
-
[22]
(14) Rerolle, C.;Wiart, R. Electrochim. Acta 1995, 40 (8), 939. doi: 10.1016/0013-4686(95)00026-B
-
[23]
(15) (a) Yang, C. J.; Ko, Y.; Park, S. M. Electrochim. Acta 2012, 78, 615. doi: 10.1016/j.electacta.2012.06.055
-
[24]
(b) Conway, B. E.; Liu, T., Langmuir 1990, 6 (1), 268.
-
[25]
(c) Li,W.; Chen, H.; Long, X.;Wu, F.;Wu, Y.; Yan, J.; Zhang, C. J. Power Sources 2006, 158 (2), 902.
-
[26]
(d) Zhang,W.; Houlachi, G. Hydrometallurgy 2010, 104 (2), 129.
-
[27]
(e) Ye, Z. G.; Meng, H. M.; Sun, D. B. Electrochim. Acta 2008, 53 (18), 5639.
-
[28]
(16) (a) Palmas, S.; Polcaro, A.; Ferrara, F.; Ruiz, J. R.; Delogu, F.; Bonatto-Minella, C.; Mulas, G. J. Appl. Electrochem. 2008, 38 (7), 907. doi: 10.1007/s10800-008-9494-6
-
[29]
(b) Cao, C. N. Electrochim. Acta 1990, 35 (5), 831.
-
[30]
(17) (a) Alves, V.; Da Silva, L.; Boodts, J. Electrochim. Acta 1998, 44 (8-9), 1525. doi: 10.1016/S0013-4686(98)00276-X
-
[31]
(b) Franco, D. V.; Silva, L. M. D.; Jardim,W. F.; Boodts, J. F. J. Brazil. Chem. Soc. 2006, 17 (4), 446.
-
[32]
(18) Brug, G. J.; van den Eeden, A. L. G.; Sluyters-Rehbach, M.; Sluyters, J. H. J. Electroanal. Chem. Interfacial Electrochem. 1984, 176 (1-2), 275.
-
[33]
(19) Martelli, G. N.; Ornelas, R.; Faita, G. Electrochim. Acta 1994, 39 (11-12), 1551.
-
[34]
(20) Lai, Y. Q.; Li, Y.; Jiang, L. X.; Xu,W.; Lv, X. J.; Li, J.; Liu, Y. X. J. Electroanal. Chem. 2012, 671, 16. doi: 10.1016/j.jelechem.2012.02.011
-
[1]
-
-
[1]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[2]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[3]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[4]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[5]
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
-
[6]
Xiao Liu , Guangzhong Cao , Mingli Gao , Hong Wu , Hongyan Feng , Chenxiao Jiang , Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043
-
[7]
Shuyu Liu , Xiaomin Sun , Bohan Song , Gaofeng Zeng , Bingbing Du , Chongshen Guo , Cong Wang , Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113
-
[8]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[9]
Kun Li , Na Gao , Shuangyan Huan , Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068
-
[10]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[11]
Lan Ma , Cailu He , Ziqi Liu , Yaohan Yang , Qingxia Ming , Xue Luo , Tianfeng He , Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046
-
[12]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[13]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[14]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[15]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[16]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[17]
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
-
[18]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[19]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[20]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[1]
Metrics
- PDF Downloads(602)
- Abstract views(620)
- HTML views(7)