Citation: ZHONG Xiao-Cong, GUI Jun-Feng, YU Xiao-Ying, LIU Fang-Yang, JIANG Liang-Xing, LAI Yan-Qing, LI Jie, LIU Ye-Xiang. Influence of Alloying Element Nd on the Electrochemical Behavior of Pb-Ag Anode in H2SO4 Solution[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 492-499. doi: 10.3866/PKU.WHXB201312301 shu

Influence of Alloying Element Nd on the Electrochemical Behavior of Pb-Ag Anode in H2SO4 Solution

  • Received Date: 1 November 2013
    Available Online: 30 December 2013

    Fund Project: 国家自然科学基金(51204208,51374240),国家科技支撑计划课题(2012BAA03B04) (51204208,51374240),国家科技支撑计划课题(2012BAA03B04)湖南省自然科学基金(13JJ1003)资助项目 (13JJ1003)

  • Anodic layers and oxygen evolution reaction (OER) of Pb-Ag and Pb-Ag-Nd anodes were investigated by cyclic voltammetry, linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and environmental scanning electron microscopy (ESEM). Alloying with Nd promoted the formation of Pb/PbOn/PbSO4 (1≤n<2). Nd facilitated the transformation of PbOn and PbSO4 to α-PbO2 and β-PbO2, at potential above 1.2 V vs Hg/Hg2SO4 (saturated K2SO4 solution). ESEM and LSV indicated that the anodic layer formed on the Pb-Ag-Nd anode was thicker and more compact than that formed on the Pb-Ag anode. Consequently, the anodic layer on the Pb-Ag-Nd anode could provide better protection for metallic substrates. EIS indicated that the OER was determined by the formation and adsorption of intermediates. Nd enhanced the OER reactivity, because of a smaller adsorption resistance and larger coverage of intermediates at the anodic layer/electrolyte interface. In summary, alloying with Nd can enhance the corrosion resistance and reduce the energy consumption of Pb-Ag anode due to lower anodic potential.

  • 加载中
    1. [1]

      (1) (a) Lai, Y. Q.; Jiang, L. X.; Li, J.; Zhong, S. P.; Lv, X. J.; Peng, H. Z.; Liu, Y. X. Hydrometallurgy 2010, 102 (1-4), 73. doi: 10.1016/j.hydromet.2010.02.012

    2. [2]

      (b) Newnham, R. H. J. Appl. Electrochem. 1992, 22 (2), 116.

    3. [3]

      (c) Petrova, M.; Noncheva, Z.; Dobrev, T.; Rashkov, Kunchev, N.; Petrov, D.; Vlaev, S.; Mihnev, V.; Zarev, S. Hydrometallurgy 1996, 40 (3), 319. doi: 10.1016/0304-386X(95)00010-E

    4. [4]

      (4) Clancy, M.; Bettles, C. J.; Stuart, A.; Birbilis, N. Hydrometallurgy 2013, 131-132, 144.

    5. [5]

      (5) Hong, B.; Jiang, L. X.; Lv, X. J.; Ni, H. F.; Lai, Y. Q.; Li, J.; Liu, Y. X. T. Nonferr. Metal Soc. 2012, 22 (4), 1126. [洪波, 蒋良兴, 吕晓军, 倪恒发, 赖延清, 李劼, 刘业翔. 中国有色金属学报, 2012, 22 (4), 1126.]

    6. [6]

      (6) (a) Pavlov, D.; Poulieff, C.; Klaja, E.; Iordanov, N. J. Electrochem. Soc. 1969, 116, 316. doi: 10.1149/1.2411836

    7. [7]

      (b) Monahov, B.; Pavlov, D. J. Appl. Electrochem. 1993, 23 (12), 1244.

    8. [8]

      (c) Ho, J.; Simpraga, R.; Conway, B. J. Electroanal. Chem. 1994, 366 (1), 147.

    9. [9]

      (d) Li, H.; Guo,W. X.; Chen, H. Y.; Finlow, D. E.; Zhou, H.W.; Dou, C. L.; Xiao, G. M.; Peng, S. G.;Wei,W.W.;Wang, H. J. Power Sources 2009, 191 (1), 111.

    10. [10]

      (7) Burbank, J. J. Electrochem. Soc. 1959, 106, 369. doi: 10.1149/1.2427362

    11. [11]

      (8) (a) Babi , R.; Metiko -Hukovi , M.; Lajqy, N.; Brini , S. J. Power Sources 1994, 52 (1), 17. doi: 10.1016/0378-7753(94)01925-8

    12. [12]

      (b) Dobrev, T.; Valchanova, I.; Stefanov, Y.; Magaeva, S. Trans. Inst. Met. Finish. 2009, 87 (3), 136.

    13. [13]

      (c) Ijomah, M. J. Electrochem. Soc. 1987, 134 (12), 2960.

    14. [14]

      (d) Buchanan, J.; Peter, L. Electrochim. Acta 1988, 33 (1), 127.

    15. [15]

      (e) Ijomah, M. J. Appl. Electrochem. 1988, 18 (1), 142.

    16. [16]

      (f) Varela, F.; Gassa, L.; Vilche, J. Electrochim. Acta 1992, 37 (6), 1119.

    17. [17]

      (9) Sharpe, T. F. J. Electrochem. Soc. 1977, 124 (2), 168. doi: 10.1149/1.2133259

    18. [18]

      (10) Czerwinski, A.; Zelazowska, M.; Grden, M.; Kuc, K.; Milewski, J.; Nowacki, A.;Wojcik, G.; Kopczyk, M. J. Power Sources 2000, 85 (1), 49. doi: 10.1016/S0378-7753(99)00381-X

    19. [19]

      (11) Guo, Y. L. J. Electrochem. Soc. 1991, 138 (5), 1222. doi: 10.1149/1.2085763

    20. [20]

      (12) Sun, Q. J.; Guo, Y. L. J. Electroanal. Chem. 2000, 493 (1), 123.

    21. [21]

      (13) Hu, J. M.; Zhang, J. Q.; Cao, C. N. Int. J. Hydrog. Energy 2004, 29 (8), 791. doi: 10.1016/j.ijhydene.2003.09.007

    22. [22]

      (14) Rerolle, C.;Wiart, R. Electrochim. Acta 1995, 40 (8), 939. doi: 10.1016/0013-4686(95)00026-B

    23. [23]

      (15) (a) Yang, C. J.; Ko, Y.; Park, S. M. Electrochim. Acta 2012, 78, 615. doi: 10.1016/j.electacta.2012.06.055

    24. [24]

      (b) Conway, B. E.; Liu, T., Langmuir 1990, 6 (1), 268.

    25. [25]

      (c) Li,W.; Chen, H.; Long, X.;Wu, F.;Wu, Y.; Yan, J.; Zhang, C. J. Power Sources 2006, 158 (2), 902.

    26. [26]

      (d) Zhang,W.; Houlachi, G. Hydrometallurgy 2010, 104 (2), 129.

    27. [27]

      (e) Ye, Z. G.; Meng, H. M.; Sun, D. B. Electrochim. Acta 2008, 53 (18), 5639.

    28. [28]

      (16) (a) Palmas, S.; Polcaro, A.; Ferrara, F.; Ruiz, J. R.; Delogu, F.; Bonatto-Minella, C.; Mulas, G. J. Appl. Electrochem. 2008, 38 (7), 907. doi: 10.1007/s10800-008-9494-6

    29. [29]

      (b) Cao, C. N. Electrochim. Acta 1990, 35 (5), 831.

    30. [30]

      (17) (a) Alves, V.; Da Silva, L.; Boodts, J. Electrochim. Acta 1998, 44 (8-9), 1525. doi: 10.1016/S0013-4686(98)00276-X

    31. [31]

      (b) Franco, D. V.; Silva, L. M. D.; Jardim,W. F.; Boodts, J. F. J. Brazil. Chem. Soc. 2006, 17 (4), 446.

    32. [32]

      (18) Brug, G. J.; van den Eeden, A. L. G.; Sluyters-Rehbach, M.; Sluyters, J. H. J. Electroanal. Chem. Interfacial Electrochem. 1984, 176 (1-2), 275.

    33. [33]

      (19) Martelli, G. N.; Ornelas, R.; Faita, G. Electrochim. Acta 1994, 39 (11-12), 1551.

    34. [34]

      (20) Lai, Y. Q.; Li, Y.; Jiang, L. X.; Xu,W.; Lv, X. J.; Li, J.; Liu, Y. X. J. Electroanal. Chem. 2012, 671, 16. doi: 10.1016/j.jelechem.2012.02.011


  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    5. [5]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    6. [6]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    7. [7]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    8. [8]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    9. [9]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    10. [10]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    11. [11]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    12. [12]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    17. [17]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    18. [18]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

Metrics
  • PDF Downloads(602)
  • Abstract views(619)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return