Citation: FAN Zhong-Xiang, HUANG Jian-Hua. Dissipative Particle Dynamics Simulation on Aggregation of Rod-Coil-Rod Triblock Copolymer in Dilute Solution[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 408-412. doi: 10.3866/PKU.WHXB201312271
-
The aggregate morphology of rod-coil-rod copolymers in a dilute solution was investigated by dissipative particle dynamics simulations. The influences of the mutual compatibility between rod and coil blocks, the solvent property, the coil length, and the copolymer concentration on the aggregate structure were studied in detail. The simulation results show that the increase of the mutual compatibility between rod and coil blocks induces transformation of the aggregate morphology from spherical, to onion-like, to cage-like, and ultimately to cylindrical. With the increase in the hydrophobicity of the coil block, the cagelike aggregate changes into an onion-like aggregate, then a patchy aggregate, and then an inverted onionlike aggregate. Finally, a phase diagram of the rod-coil-rod triblock copolymers as a function of the coil length and the copolymer concentration is presented. It shows that cage aggregates are easily formed when the coil length is long and the concentration is relatively low, whereas onion-like aggregates are preferred when the coil length is short and the concentration is moderately low.
-
-
[1]
(1) Tung, Y. C.; Wu, W. C.; Chen, W. C. Macromol. Rapid Commun. 2006, 27 (21), 1838.
-
[2]
(2) Vriezema, D. M.; Hoogboom, J.; Velonia, K.; Takazawa, K.; Christianen, P. C. M.; Maan, J. C.; Rowan, A. E.; Nolte, R. J. M. Angew. Chem. Int. Edit. 2003, 42 (7), 772. doi: 10.1002/anie.200390204
-
[3]
(3) Lin, C. H.; Tung, Y. C.; Ruokolainen, J.; Mezzenga, R.; Chen, W. C. Macromolecules 2008, 41 (22), 8759. doi: 10.1021/ma8016629
-
[4]
(4) Horsch, M. A.; Zhang, Z.; Glotzer, S. C. J. Chem. Phys. 2006, 125 (18), 184903. doi: 10.1063/1.2363983
-
[5]
(5) He, L. L.; Zhang, L. X.; Ye, Y. S.; Liang, H. J. J. Phys. Chem. B 2010, 114 (21), 7189. doi: 10.1021/jp101129p
-
[6]
(6) Jenekhe, S. A.; Chen, X. L. Science 1999, 283 (5400), 372. doi: 10.1126/science.283.5400.372
-
[7]
(7) Cai, C. F.; Wang, L. Q.; Lin, J. P.; Zhang, X. Langmuir 2012, 28 (9), 4515. doi: 10.1021/la204941w
-
[8]
(8) Ding, W.; Lin, S.; Lin, J.; Zhang, L. J. Phys. Chem. B 2008, 112 (3), 776. doi: 10.1021/jp076939p
-
[9]
(9) Pinol, R.; Jia, L.; Gubellini, F.; Levy, D.; Albouy, P. A.; Keller, P.; Cao, A.; Li, M. H. Macromolecules 2007, 40 (16), 5625. doi: 10.1021/ma071064y
-
[10]
(10) Olsen, B. D.; Segalman, R. A. Mater. Sci. Eng. R-Rep. 2008, 62 (2), 37. doi: 10.1016/j.mser.2008.04.001
-
[11]
(11) Zhu, X. M.; Wang, L. Q.; Lin, J. P. J. Phys. Chem. B 2013, 117 (18), 5748. doi: 10.1021/jp400882h
-
[12]
(12) Chen, J. Z.; Sun, Z. Y.; Zhang, C. X.; An, L. J.; Tong, Z. J. Chem. Phys. 2008, 128 (7), 074904. doi: 10.1063/1.2831802
-
[13]
(13) Yang, Z. F.;Wu, J. G.; Yang, Y. K.; Zhou, X. P.; Xie, X. L. Front. Chem. Eng. China 2008, 2 (1), 85. doi: 10.1007/s11705-008-0003-6
-
[14]
(14) Li, K.; Wang, Q. Chem. Commun. 2005, 4786.
-
[15]
(15) Yang, Z. F.; Wang, X. T.; Yang, Y. K.; Liao, Y. G.; Wei, Y.; Xie, X. L. Langmuir 2010, 26 (12), 9386. doi: 10.1021/la100382s
-
[16]
(16) Yuan, S. L.; Wu, R.; Cai, Z. T. Acta Phys. -Chim. Sin. 2004, 20 (8), 811. [苑世领,吴锐,蔡政亭. 物理化学学报, 2004, 20 (8), 811.] doi: 10.3866/PKU.WHXB20040806
-
[17]
(17) Chou, S. H.; David, T. W.; Tsao, H. K.; Sheng, Y. J. Soft Matter 2011, 7 (19), 9119. doi: 10.1039/c1sm05808h
-
[18]
(18) Chen, H. Y.; Ruckenstein, E. Soft Matter 2012, 8 (34), 8911. doi: 10.1039/c2sm26035b
-
[19]
(19) Huang, J. H.; Fan, Z. X.; Ma, Z. X. J. Chem. Phys. 2013, 139 (6), 064905. doi: 10.1063/1.4818417
-
[20]
(20) Hoogerbrugge, P. J.; Koelman, J. M. V. A. Europhys. Lett. 1992, 19 (3), 155. doi: 10.1209/0295-5075/19/3/001
-
[21]
(21) Español, P. Europhys. Lett. 1997, 40 (6), 631. doi: 10.1209/epl/i1997-00515-8
-
[22]
(22) Ripoll, M.; Ernst, M. H.; Español, P. J. Chem. Phys. 2001, 115 (15), 7271. doi: 10.1063/1.1402989
-
[23]
(23) Kremer, K.; Grest, G. S. J. Chem. Phys. 1990, 92 (8), 5057. doi: 10.1063/1.458541
-
[24]
(24) AlSunaidi, A.; den Otter, W. K.; Clarke, J. H. R. Philos. Trans. R. Soc. London, Ser. A 2004, 362 (1821), 1773. 15 doi: 10.1098/rsta.2004.1414
-
[25]
(25) Groot, R. D.; Warren, P. B. J. Chem. Phys. 1997, 107 (11), 4423. doi: 10.1063/1.474784
-
[26]
(26) Chou, S. H.; Tsao, H. K.; Sheng, Y. J. J. Chem. Phys. 2011, 134 (3), 034904. doi: 10.1063/1.3537977
-
[27]
(27) Chen, H. Y.; Ruckenstein, E. Soft Matter 2012, 8 (5), 1327. doi: 10.1039/c2sm06968g
-
[28]
(28) Kong, W. X.; Li, B. H.; Jin, Q. H.; Ding, D. T.; Shi, A. C. Langmuir 2010, 26 (6), 4226. doi: 10.1021/la903292f
-
[1]
-
-
[1]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[2]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[3]
Shunliu Deng , Haifeng Su , Yaxian Zhu , Yuzhi Wang , Yuhua Weng , Zhaobin Chen , Shunü Peng , Yinyun Lü , Xinyi Hong , Yiru Wang , Xiaozhen Huang , Zhimin Lin , Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002
-
[4]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[5]
Hongling Yuan , Jialin Xie , Jiawei Wang , Jixiang Zhao , Jiayan Liu , Qing Feng , Wei Qi , Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041
-
[6]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[7]
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
-
[8]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[9]
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043
-
[10]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[11]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[12]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[13]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[14]
Hua Hou , Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045
-
[15]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[16]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[17]
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
-
[18]
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
-
[19]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[20]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[1]
Metrics
- PDF Downloads(879)
- Abstract views(731)
- HTML views(5)