Citation: XU Li-Hong, KAN Cai-Xia, WANG Chang-Shun, CONG Bo, NI Yuan, SHI Da-Ning. Synthesis of Ag Nanostructures with Controlled Shapes by a Polyvinylpyrrolidone-Assisted Hydrothermal Method[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 569-575. doi: 10.3866/PKU.WHXB201312253 shu

Synthesis of Ag Nanostructures with Controlled Shapes by a Polyvinylpyrrolidone-Assisted Hydrothermal Method

  • Received Date: 28 October 2013
    Available Online: 25 December 2013

    Fund Project: 国家自然科学基金(11274173,51032002,61222403,11374159) (11274173,51032002,61222403,11374159)中央高校基本科研业务费专项资金(NZ2013304)资助项目 (NZ2013304)

  • Ag nanostructures with well-defined shapes and optical resonances have been masssynthesized by a hydrothermal method. Polyvinylpyrrolidone (PVP) polymers with average molecular weights (MW) of 8000, 40000, 160000, and 360000 denoted as K17, K30, K60, and K90, respectively, were chosen as surfactants (K is usually used to represent the characteristic value of relative viscosity of the PVP solution). It was found that the larger MW of PVP, the higher relative viscosity of the PVP solution. All of the reactants were transferred into a 60 mL stainless steel autoclave and heated at a certain temperature for hours. Five-fold twinned Ag nanodecahedrons with nearly uniform size were synthesized in the aqueous solution of K17. Ag nanowires were obtained with the presence of K30, K60, and K90 in ethylene glycol (EG) solution, and the aspect ratios of the Ag nanowires increased with increasing the MW of PVP. The morphology and microstructures of the obtained products were characterized by transmission electron microscopy (TEM) and field emission-scanning electron microscopy (FE-SEM). The surface plasmon resonance (SPR) spectra of the Ag nanostructures were measured using an UV-Vis spectrophotometer. The results showed that the surface plasma resonance of the Ag nanostructures was dependent on their shape and size.

  • 加载中
    1. [1]

      (1) Lu,W.; Lieber, C. M. Nat. Mater. 2007, 6, 841. doi: 10.1038/nmat2028

    2. [2]

      (2) Lal, S.; Link, S.; Halas, N. J. Nat. Photonics 2007, 1, 641. doi: 10.1038/nphoton.2007.223

    3. [3]

      (3) Xiong, Y.;Wiley, B. J.; Xia, Y. Angew. Chem. Int. Edit. 2007, 46, 7157.

    4. [4]

      (4) Feng, M.; Zhang, M.; Song, J.; Li, X.; Yu, S. ACS Nano 2011, 5, 6726. doi: 10.1021/nn202296h

    5. [5]

      (5) Pedireddy, S.; Li, A.; Bosman, M.; Phang, I. Y.; Li, S.; Ling, X. Y. J. Phys. Chem. C 2013, 117, 16640. doi: 10.1021/jp4063077

    6. [6]

      (6) Mackenzie, J. D.; Bescher, E. P. Accounts Chem. Res. 2007, 40, 810. doi: 10.1021/ar7000149

    7. [7]

      (7) Reddy, M. V.; Jose, R.; Teng, T. H.; Chowdari, B. V. R.; Ramakrishna, S. Electrochim. Acta 2010, 55, 3109. doi: 10.1016/j.electacta.2009.12.095

    8. [8]

      (8) Koch, C. C. Rev. Adv. Mater. Sci. 2003, 5, 91.

    9. [9]

      (9) Zhang, D. L. Prog. Mater. Sci. 2004, 49, 537. doi: 10.1016/S0079-6425(03)00034-3

    10. [10]

      (10) Fang, J. Y.; Qin, S. Q.; Zhang, X. A.;Wang, G.;Wang, F.; Chang, S. L. Micro & Nano Lett. 2011, 6, 971. doi: 10.1049/mnl.2011.0480

    11. [11]

      (11) Duan, J. Y.; Zhang, Q. X.;Wang, Y. L.; Guan, J. G. Acta Phys. -Chim. Sin. 2009, 25, 1405. [段君元, 章桥新, 王一龙, 官建国. 物理化学学报, 2009, 25, 1405.] doi: 10.3866/PKU.WHXB20090731

    12. [12]

      (12) Wu, H.; Kuo, C.; Huang, M. H. Langmuir 2010, 26, 12307. doi: 10.1021/la1015065

    13. [13]

      (13) Li, Z. C.; Shang, T. M.; Zhou, Q. F.; Feng, K. Micro & Nano Lett. 2011, 6, 90. doi: 10.1049/mnl.2010.0183

    14. [14]

      (14) Silva, J. N.; Saade, J.; Farias, P. M. A.; Falcão, E. H. L. Advances in Nanoparticles 2013, 2, 217. doi: 10.4236/anp.2013.23030

    15. [15]

      (15) Wang, Y.; Zheng, Y.; Huang, C. Z.; Xia, Y. J. Am. Chem. Soc. 2013, 135, 1941. doi: 10.1021/ja311503q

    16. [16]

      (16) Zhang, Q.; Ge, J.; Pham, T.; ebl, J.; Hu, Y.; Lu, Z.; Yin, Y. Angew. Chem. Int. Edit. 2009, 48, 3516. doi: 10.1002/anie.v48: 19

    17. [17]

      (17) Huang, X.; Qi, X.; Huang, Y.; Li, S.; Xue, C.; Gan, C. L.; Boey, F.; Zhang, H. ACS Nano 2010, 4, 6196. doi: 10.1021/nn101803m

    18. [18]

      (18) Bordenave, M. D.; Scarpettini, A. F.; Roldán, M. V.; Pellegri, N.; Bragas, A. V. Mater. Chem. Phys. 2013, 139, 100. doi: 10.1016/j.matchemphys.2012.12.061

    19. [19]

      (19) Korte, K. E.; Skrabalak, S. E.; Xia, Y. J. Mater. Chem. 2008, 18, 437. doi: 10.1039/b714072j

    20. [20]

      (20) Chen, D.; Qiao, X.; Qiu, X.; Chen, J. G.; Jiang, R. J. Colloid Interface Sci. 2010, 344, 286. doi: 10.1016/j.jcis.2009.12.055

    21. [21]

      (21) Im, S. H.; Lee, Y. T.;Wiley, B.; Xia, Y. Angew. Chem. Int. Edit. 2005, 117, 2192.

    22. [22]

      (22) Kan, C.;Wang, C.; Li, H.; Qi, J.; Zhu, J.; Li, Z.; Shi, D. Small 2010, 6, 1768. doi: 10.1002/smll.201000600

    23. [23]

      (23) Sun, Y.; Xia, Y. Science 2002, 298, 2176. doi: 10.1126/science.1077229

    24. [24]

      (24) Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y. Nano Lett. 2004, 4, 1733. doi: 10.1021/nl048912c

    25. [25]

      (25) Tang, X.; Tsuji, M.; Jiang, P.; Nishio, M.; Jang, S.; Yoon, S. Colloid Surface A 2009, 338, 33. doi: 10.1016/j.colsurfa.2008.12.029

    26. [26]

      (26) Zhu, J.; Kan, C.; Zhu, X.;Wan, J.; Han, M.; Zhao, Y.;Wang, B.; Wang, G. J. Mater. Res. 2007, 22, 1479. doi: 10.1557/JMR.2007.0222

    27. [27]

      (27) Zhao, T.; Sun, R.; Yu, S.; Zhang, Z.; Zhou, L.; Huang, H.; Du, R. Colloid Surface A 2010, 366, 197. doi: 10.1016/j.colsurfa.2010.06.005

    28. [28]

      (28) Kottmann, J. P.; Martin, O. J. F.; Smith, D. R.; Schultz, S. Phys. Rev. B 2001, 64, 235402. doi: 10.1103/PhysRevB.64.235402

    29. [29]

      (29) Kottmann, J. P.; Martin, O. J. F.; Smith, D. R.; Schultz, S. Opt. Express 2000, 6, 213. doi: 10.1364/OE.6.000213

    30. [30]

      (30) Rycenga, M.; Cobley, C. M.; Zeng, J.; Li,W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. Chem. Rev. 2011, 111, 3669. doi: 10.1021/cr100275d

    31. [31]

      (31) Kan, C.;Wang, C.; Zhu, J.; Li, H. J. Solid State Chem. 2010, 183, 858. doi: 10.1016/j.jssc.2010.01.021

    32. [32]

      (32) u, L.; Chipara, M.; Zaleski, J. M. Chem. Mater. 2007, 19, 1755. doi: 10.1021/cm070160a

    33. [33]

      (33) Hu, M.; Gao, J.; Dong, Y.; Yang, S.; Li, R. K. Y. RSC Adv. 2012, 2, 2055. doi: 10.1039/c2ra01162j

    34. [34]

      (34) Chen, D.; Qiao, X.; Qiu, X.; Chen, J.; Jiang, R. J. Mater. Sci- Mater. El. 2011, 22, 6. doi: 10.1007/s10854-010-0074-2

    35. [35]

      (35) Zhang,W. C.;Wu, X. L.; Chen, H. T.; Gao, Y. J.; Zhu, J.; Huang, G. S.; Chu, P. K. Acta Mater. 2008, 56, 2508. doi: 10.1016/j.actamat.2008.01.043

    36. [36]

      (36) Mao, H.; Feng, J.; Ma, X.;Wu, C.; Zhao, X. J. Nanopart. Res. 2012, 14, 1.

    37. [37]

      (37) Wang, Z. L. J. Phys. Chem. B 2000, 104, 1153. doi: 10.1021/jp993593c

    38. [38]

      (38) Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y. Nano Lett. 2003, 3, 955. doi: 10.1021/nl034312m

    39. [39]

      (39) Jiang, P.; Li, S.; Xie, S.; Gao, Y.; Song, L. Chem. -Eur. J. 2004, 10, 4817.

    40. [40]

      (40) Sosa, I. O.; Noguez, C.; Barrera, R. G. J. Phys. Chem. B 2003, 107, 6269. doi: 10.1021/jp0274076

    41. [41]

      (41) Kan, C.; Zhu, J.; Zhu, X. J. Phys. D: Appl. Phys. 2008, 41, 155304. doi: 10.1088/0022-3727/41/15/155304

    42. [42]

      (42) Li, C. R.; Lu, N. P.; Xu, Q.; Mei, J.; Dong,W. J.; Fu, J. L.; Cao, Z. X. J. Cryst. Growth 2011, 319, 88. doi: 10.1016/j.jcrysgro.2011.01.068

    43. [43]

      (43) Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Edit. 2009, 48, 60. doi: 10.1002/anie.200802248

    44. [44]

      (44) Gao, Y.; Jiang, P.; Song, L.;Wang, J. X.; Liu, L. F.; Xiang, Y. J.; Zhang, Z. X.; Zhao, X.W.; Dou, X. Y.; Luo, S. D.; Zhou,W. Y.; Xie, S. S. J. Cryst. Growth 2006, 289, 376. doi: 10.1016/j.jcrysgro.2005.11.123

    45. [45]

      (45) Mo, B.; Kan, C. X.; Ke, S. L.; Cong, B.; Xu, L. H. Acta Phys. -Chim. Sin. 2012, 28, 2511. [莫博, 阚彩侠, 柯善林, 从博, 徐丽红. 物理化学学报, 2012, 28, 2511.] doi: 10.3866/PKU.WHXB201208132


  • 加载中
    1. [1]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    2. [2]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    3. [3]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    4. [4]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    7. [7]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    8. [8]

      Li Zhou Dongyan Tang Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037

    9. [9]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    10. [10]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    11. [11]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    12. [12]

      Qijin Mo Meifang Zhuo Zhiyi Zhong Chunfang Gan Lixia Zhang . Research-Oriented Experimental Teaching in Chemistry Education at Normal University: Taking the Project of Recovering Silver Nitrate from Silver-Containing Waste as an Example. University Chemistry, 2024, 39(6): 201-206. doi: 10.3866/PKU.DXHX202310099

    13. [13]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    14. [14]

      Yan Liu Xiaojun Han Ping Xu Guoxu Zhang Yu Wang Zhicheng Zhang Dianpeng Qi . “Five Measures” Based Science and Education Integration Experimental Teaching Mode to Promote the Construction of “Specialized Experiment” Curriculum. University Chemistry, 2024, 39(10): 299-307. doi: 10.12461/PKU.DXHX202405002

    15. [15]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    16. [16]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    17. [17]

      Yecang Tang Shan Ling Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107

    18. [18]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    19. [19]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    20. [20]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

Metrics
  • PDF Downloads(1017)
  • Abstract views(1385)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return