Citation: CHEN Lai, CHEN Shi, HU Dao-Zhong, SU Yue-Feng, LI Wei-Kang, WANG Zhao, BAO Li-Ying, WU Feng. Crystal Structure and Electrochemical Performance of Lithium-Rich Cathode Materials xLi2MnO3·(1-x)LiNi0.5Mn0.5O2 (x=0.1-0.8)[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 467-475. doi: 10.3866/PKU.WHXB201312252 shu

Crystal Structure and Electrochemical Performance of Lithium-Rich Cathode Materials xLi2MnO3·(1-x)LiNi0.5Mn0.5O2 (x=0.1-0.8)

  • Received Date: 24 October 2013
    Available Online: 25 December 2013

    Fund Project: 国家重点基础研究发展规划项目(973) (2009CB220100),国家自然科学基金(51102018,21103011),国家高技术研究发展计划项目(863)(2011AA11A235,SQ2010AA1123116001) (973) (2009CB220100),国家自然科学基金(51102018,21103011),国家高技术研究发展计划项目(863)(2011AA11A235,SQ2010AA1123116001)北京理工大学重大项目培育专项计划项目(2013CX01003)资助 (2013CX01003)

  • A series of lithium-rich cathode materials, xLi2MnO3·(1-x)LiNi0.5Mn0.5O2 (x=0.1-0.8), were successfully synthesized by a sol-gel method. X-ray diffraction, scanning electron microscopy, and electrochemical tests were used to investigate the crystal structure, morphology, and electrochemical performance of the as-synthesized materials, respectively. The results showed that the materials with higher Li2MnO3 content had higher initial discharge capacity but poorer cycle stability, while the materials with lower Li2MnO3 content showed lower discharge capacity but better cycle stability, and the spinel impurity phase was also found. Based on the data, the optimal electrochemical properties were obtained when x=0.5 in xLi2MnO3·(1-x)LiNi0.5Mn0.5O2. Moreover, the electrochemical properties were also worthy of attention when x=0.4, 0.6.

  • 加载中
    1. [1]

      (1) Choi, N. S.; Chen, Z. H.; Freunberger, S. A.; Ji, X. L.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Angew. Chem. Int. Edit. 2012, 51 (40), 9994. doi: 10.1002/anie.201201429

    2. [2]

      (2) Li, H.;Wang, Z. X.; Chen, L. Q.; Huang, X. J. Adv. Mater. 2009, 21 (45), 4593. doi: 10.1002/adma.v21:45

    3. [3]

      (3) Jeong, G. J.; Kim, Y. U.; Kim, H. S.; Kim, Y. J.; Sohn, H. J. Energ Environ. Sci. 2011, 4 (6), 1986. doi: 10.1039/c0ee00831a

    4. [4]

      (4) He, P.; Yu, H. J.; De, L.; Zhou, H. S. J. Mater. Chem. 2012, 22 (9), 3680. doi: 10.1039/c2jm14305d

    5. [5]

      (5) Whittingham, M. S. Chem. Soc. Rev. 2004, 104 (10), 4271.

    6. [6]

      (6) Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Schalkwijk,W. V. Nat. Mater. 2005, 4 (5), 366. doi: 10.1038/nmat1368

    7. [7]

      (7) Nagaura, T.; Tozawa, K. Prog. Batteries Solar Cells 1990, 9, 209.

    8. [8]

      (8) Song, H. K.; Lee, K. T.; Kim, M. G.; Nazar, L. F.; Cho, J. Adv. Funct. Mater. 2010, 20 (22), 3818. doi: 10.1002/adfm.201000231

    9. [9]

      (9) Armand, M.; Tarascon, J. M. Nature 2008, 451 (7179), 652. doi: 10.1038/451652a

    10. [10]

      (10) odenough, J. B.; Kim, Y. J. Power Sources 2011, 196 (16), 6688. doi: 10.1016/j.jpowsour.2010.11.074

    11. [11]

      (11) Wu, F.; Li, N.; Su, Y. F.; Shou, H. F.; Bao, L. Y.; Yang,W.; Zhang, L. J.; An, R.; Chen, S. Adv. Mater. 2013, 25 (27), 3722. doi: 10.1002/adma.v25.27

    12. [12]

      (12) Du, K.; Hu, G. R. Chin. Sci. Bull. 2012, 57 (10), 794. [杜柯, 胡国荣. 科学通报, 2012, 57 (10), 794.] doi: 10.1360/972011-610

    13. [13]

      (13) Ritchie, A. G. J. Power Sources 2001, 96 (1), 1. doi: 10.1016/S0378-7753(00)00673-X

    14. [14]

      (14) Fergus, J.W. J. Power Sources 2010, 195 (4), 939. doi: 10.1016/j.jpowsour.2009.08.089

    15. [15]

      (15) Wu, F.; Li, N.; Su, Y.; F.; Lu, H. Q.; Zhang, L. J.; An, R.;Wang, Z.; Bao, L.Y.; Chen, S. J. Mater. Chem. 2012, 22 (4), 1489. doi: 10.1039/c1jm14459f

    16. [16]

      (16) Lu, Z. H.; MacNeil, D. D.; Dahn, J. R. Electrochem. Solid St. 2001, 4 (11), A191.

    17. [17]

      (17) Lu, Z. H.; Beaulieu, L. Y.; Donaberger, R. A.; Thomas, C. L.; Dahn, J. R. J. Electrochem. Soc. 2002, 149 (6), A778.

    18. [18]

      (18) Thackeray, M. M.; Kang, S. H.; Johnson, C. S.; Vaughey, J, T.; Benedek, R. B.; Hackney, S. A. J. Mater. Chem. 2007, 17 (30), 3112. doi: 10.1039/b702425h

    19. [19]

      (19) Armstrong, A. R.; Holzapfel, M.; Novák, P.; Johnson, C. S.; Kang, S. H.; Thackeray, M. M.; Bruce, P. G. J. Am. Chem. Soc. 2006, 128 (26), 8694. doi: 10.1021/ja062027+

    20. [20]

      (20) Wang, D. P.; Belharouak, I.; Zhou, G.W.; Amine, K. Adv. Funct. Mater. 2013, 23 (8), 1070. doi: 10.1002/adfm.v23.8

    21. [21]

      (21) Chen, Z.; Ren, Y.; Lee, E.; Johnson, C.; Qin, Y.; Amine, K. Adv. Energy Mater. 2013, 3 (6), 729. doi: 10.1002/aenm.201201059

    22. [22]

      (22) Park, Y. J.; Hong, Y. S.;Wu, X. L.; Kim, M. G.; Ryu, K. S.; Chang, S.H. J. Electrochem. Soc. 2004, 151 (5), A720.

    23. [23]

      (23) Meng, Y. S.; Ceder, G.; Grey, C. P.; Yoon,W. S.; Jiang, M.; Bréger, J.; Horn, Y. S. Chem. Mater. 2005, 17 (9), 2386. doi: 10.1021/cm047779m

    24. [24]

      (24) Bréger, J.; Jiang, M.; Dupré, N.; Meng, Y. S.; Horn, Y. S.; Ceder, G.; Grey, C. P. J. Solid State Chem. 2005, 178 (9), 2575. doi: 10.1016/j.jssc.2005.05.027

    25. [25]

      (25) Kim, J. S.; Johnson, C. S.; Vaughey, J. T.; Thackeray, M. M. Chem. Mater. 2004, 16 (10), 1996. doi: 10.1021/cm0306461

    26. [26]

      (26) Armstrong, A. R.; Bruce, P. G. Electrochem. Solid. St. 2004, 7 (1), A1.

    27. [27]

      (27) Park, M. S.; Lee, J.W.; Choi,W.; Im, D.; Doo, S. G.; Park, K. S. J. Mater. Chem. 2010, 20 (34), 7208. doi: 10.1039/c0jm00617c

    28. [28]

      (28) Weill, F.; Tran, N.; Martin, N.; Croguennec, L.; Delmas, C. Electrochem. Solid. St. 2007, 10 (8), A194.

    29. [29]

      (29) Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2002, 149 (7), A815.

    30. [30]

      (30) Park, Y. J.; Hong, Y. S.;Wu, X.; Ryu, K. S.; Chang, S. H. J. Power Sources 2004, 129 (2), 288. doi: 10.1016/j.jpowsour.2003.11.024

    31. [31]

      (31) Hong, Y. S.; Park, Y. J.; Ryu, K. S.; Chang, S. H.; Kim, M. G. J. Mater. Chem. 2004, 14 (9), 1424. doi: 10.1039/b311888f

    32. [32]

      (32) Jain, G.; Yang, J. S.; Balasubramanian, M.; Xu, J. J. Chem. Mater. 2005, 17 (15), 3850. doi: 10.1021/cm0503329

    33. [33]

      (33) Thackeray, M. M.; Kang, S. H.; Johnson, C. S.; Vauqhey, J. T.; Benedek, R.; Hackney, S. A. J. Mater. Chem. 2007, 17 (30), 3112. doi: 10.1039/b702425h

    34. [34]

      (34) Bareno, J.; Lei, C. H.;Wen, J. G.; Kang, S. H.; Petrov, I.; Abraham, D. P. Adv. Mater. 2010, 22 (10), 1122. doi: 10.1002/adma.200904247

    35. [35]

      (35) Koyama, Y.; Tanaka, I.; Nagao, M.; Kanno, R. J. Power Sources 2009, 189 (1), 798. doi: 10.1016/j.jpowsour.2008.07.073

    36. [36]

      (36) Bréger, J.; Meng, Y. S.; Hinuma, Y.; Kumar, S. D.; Kang, K.; Horn, Y. S.; Ceder, G.; Grey, C. P. Chem. Mater. 2006, 18 (20), 4768. doi: 10.1021/cm060886r

    37. [37]

      (37) Johnson, C. S.; Li, N.; Lefief, C.; Vaughey, J. T.; Thackeray, M. M. Chem. Mater. 2008, 20 (19), 6095. doi: 10.1021/cm801245r

    38. [38]

      (38) Thackeray, M. M.; Johnson, C. S.; Vaughey, J. T.; Li, N.; Hackney, S. A. J. Mater. Chem. 2005, 15 (23), 2257. doi: 10.1039/b417616m

    39. [39]

      (39) Belharouak, I.; Koenig, G. M., Jr.; Ma, J.W.;Wang, D. P.; Amine, K. Electrochem. Commun. 2011, 13 (3), 232. doi: 10.1016/j.elecom.2010.12.021

    40. [40]

      (40) Myung, S. T.; Kumagai, N.; Komaba, S.; Chung, H. T. Solid State Ionics 2001, 139 (1), 47.

    41. [41]

      (41) Kim, Y.; Hyun, S. K.; Martin, S.W. Electrochim. Acta 2006, 52 (3), 1316. doi: 10.1016/j.electacta.2006.07.033

    42. [42]

      (42) Morales, J.; Perez-Vicente, C.; Tirado, J. L. Mater. Res. Bull. 1990, 25 (5), 623. doi: 10.1016/0025-5408(90)90028-Z

    43. [43]

      (43) Delmas, C.; Peres, J. P.; Rougier, A.; Demourgues, A.;Weill, F.; Chadwick, A.; Broussely, M.; Perton, F.; Biensan, P.;Willmann, P. J. Power Sources 1997, 68 (1), 120. doi: 10.1016/S0378-7753(97)02664-5

    44. [44]

      (44) Kim, J. M.; Chung, H. T. Electrochim. Acta 2004, 49 (21), 3573. doi: 10.1016/j.electacta.2004.03.025

    45. [45]

      (45) Fey, G. T. K.; Shiu, R. F.; Subramanian, V.; Chen, J. G.; Chen, C. L. J. Power Sources 2002, 103 (2), 265. doi: 10.1016/S0378-7753(01)00859-X

    46. [46]

      (46) Kim, J. H.; Park, C.W.; Sun, Y. K. Solid State Ionics 2003, 164 (1), 43.

    47. [47]

      (47) Yu, L.; Qiu,W.; Lian, F.; Huang, J.; Kang, X. L. J. Alloy. Compd. 2009, 471 (1), 317

    48. [48]

      (48) Rossouw, M. H.; Liles, D. C.; Thackeray, M. M. J. Solid State Chem. 1993, 104 (2), 464. doi: 10.1006/jssc.1993.1182

    49. [49]

      (49) Robertson, A. D.; Bruce, P. G. Chem. Commun. 2002, 2790.

    50. [50]

      (50) Tran, N.; Croguennec, L.; Ménétrier, M.;Weill, F.; Biensan, P.; Jordy, C.; Delmas, C. Chem. Mater. 2008, 20 (15), 4815. doi: 10.1021/cm070435m

    51. [51]

      (51) Jiang, M.; Key, B.; Meng, Y. S.; Grey, C. P. Chem. Mater. 2009, 21 (13), 2733. doi: 10.1021/cm900279u

    52. [52]

      (52) Johnson, C. S.; Li, N.; Lefief, C.; Thackeray, M. M. Electrochem. Commun. 2007, 9 (4), 787. doi: 10.1016/j.elecom.2006.11.006

    53. [53]

      (53) Kalyani, P.; Chitra, S.; Mohan, T.; pukumar, S. J. Power Sources 1999, 80 (1), 103.

    54. [54]

      (54) Robertson, A. D.; Bruce, P. G. Chem. Mater. 2003, 15 (10), 1984. doi: 10.1021/cm030047u

    55. [55]

      (55) Toshimi, T.; Hiroshi, H.; Etsuo, A. K. J. Solid State Chem. 1995, 115 (2), 420. doi: 10.1006/jssc.1995.1154

    56. [56]

      (56) Belharouak, I.; Koenig, G. M., Jr.; Ma, J.W.;Wang, D. P.; Amine, K. Electrochem. Commun. 2011, 13 (3), 232. doi: 10.1016/j.elecom.2010.12.021

    57. [57]

      (57) Ammundsen, B.; Paulsen, J. Adv. Mater. 2001, 13 (12-13), 943. doi: 10.1002/1521-4095(200107)13:12/13<943::AIDADMA943> 3.0.CO;2-J

    58. [58]

      (58) Johnson, C. S.; Korte, S. D.; Vaughey, J. T.; Thackeray, M. M.; Bofinger, T. E.; Hom, Y. S.; Hackney, S. A. J. Power Sources 1999, 81, 491.

    59. [59]

      (59) Wang, Z.;Wu, F.; Su, Y. F.; Bao, L. Y.; Chen, L.; Li, N.; Chen, S. Acta Phys. -Chim. Sin. 2012, 28 (4), 823. [王昭, 吴锋, 苏岳锋, 包丽颖, 陈来, 李宁, 陈实. 物理化学学报, 2012, 28 (4), 823.] doi: 10.3866/PKU.WHXB201202102


  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    15. [15]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    16. [16]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    19. [19]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(761)
  • Abstract views(818)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return