Citation:
LI Jin-Xia, ZHANG Cong-Jie. Structures and Properties of BX[(CH2)n]3 and BX(CH2)[CH(CH2)nCH] (X=N, P) with the [n.n.n]propellane Configuration[J]. Acta Physico-Chimica Sinica,
;2014, 30(3): 423-430.
doi:
10.3866/PKU.WHXB201312251
-
We have designed a family of novel molecules BX[(CH2)n]3 and BX(CH2)[CH(CH2)nCH] (X=N, P) with the [n.n.n]propellane configuration (n=1-6). The structures, stabilities, chemical bonds, and electronic spectra of these structures were investigated using density functional theory (DFT). The calculated results indicate that all of these compounds are situated at minima on the potential energy surfaces. The energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of BN[(CH2)n]3 and BP[(CH2)n]3 (n=1-6) were in the range of 5.24-7.07 eV and 5.47-7.33 eV, respectively, and the energy gap of BX[CH2]3 is close to that of C5H6. In addition, the energy gaps of BN(CH2) [CH(CH2)nCH] and BP(CH2) [CH(CH2)nCH] (n=1-6) are around 6.80 eV. To compare the relative stabilities of these compounds, we investigated the second-order differences of energies. The results indicate that BN[(CH2)3]3, BP[(CH2)4]3, and BX(CH2)[CH(CH2)2CH] (X=N, P) are more stable than the other structures. Moreover, based on the bond lengths, Wiberg bond indices, and charges of the two"inverted"atoms, it can be concluded that the bridgehead B and N(P) atoms in BN[(CH2)n]3 (n=2, 6) and BP[(CH2)2]3 do not form chemical bonds, while the two bridgehead atoms in the other compounds studied formed chemical bonds. Additionally, topological analysis of the electron density using the theory of atoms-in-molecules shows that the inverted N―B bonds in BN[(CH2)n]3 (n=3-5) are ionic bonds whereas the B―P bonds in BP[(CH2)n]3 (n=3-6) have covalent character. The vertical transition energies of BN[(CH2)n]3, BP[(CH2)n]3, BN(CH2) [CH(CH2)nCH], and BP(CH2) [CH(CH2)nCH] (n=1-6) range from 191.1 to 284.8 nm, 191.8 to 270.1 nm, 190.5 to 199.7 nm, and 209.0 to 221.3 nm, respectively.
-
-
-
[1]
(1) Wiberg, K. B. Chem. Rev. 1989, 89, 975. doi: 10.1021/cr00095a001
-
[2]
(2) Wiberg, K. B.;Walker, F. H. J. Am. Chem. Soc. 1982, 104, 5239. doi: 10.1021/ja00383a046
-
[3]
(3) Wiberg, K. B.;Walker, S. T.; Rosenberg, R. E. J. Am. Chem. Soc. 1990, 112, 2184. doi: 10.1021/ja00162a021
-
[4]
(4) Jackson, J. E.; Allen, L. C. J. Am. Chem. Soc. 1984, 106, 591. doi: 10.1021/ja00315a022
-
[5]
(5) Feller, D.; Davidson, E. R. J. Am. Chem. Soc. 1987, 109, 4133. doi: 10.1021/ja00248a001
-
[6]
(6) Mcgarry, P. F.; Johnsoton, L. J.; Scaiano, J. C. J. Org. Chem. 1989, 54, 6133. doi: 10.1021/jo00287a033
-
[7]
(7) Wiberg, K. B. Accounts Chem. Res. 1984, 17, 379. doi: 10.1021/ar00107a001
-
[8]
(8) Wiberg, K. B. J. Am. Chem. Soc. 1983, 105, 1227. doi: 10.1021/ja00343a025
-
[9]
(9) Epiotis, N. D. J. Am. Chem. Soc. 1984, 106, 3170. doi: 10.1021/ja00323a018
-
[10]
(10) Zhao, C. Y.;Wei, T. S.; Qiu,W. Y. Acta Chim. Sin. 1991, 49, 546. [赵存元, 韦统帅, 邱文元. 化学学报, 1991, 49, 546.]
-
[11]
(11) Honegger, E.; Huber, H.; Heilbronner, E.; Dailey,W. P.;Wiberg, K. B. J. Am. Chem. Soc. 1985, 107, 7172. doi: 10.1021/ja00310a068
-
[12]
(12) Messmer, R. P.; Schultz, P. A. J. Am. Chem. Soc. 1986, 108, 7407. doi: 10.1021/ja00283a045
-
[13]
(13) Riggs, N. V.; Zoller, U.; Nguyen, M. T.; Radom, L. J. Am. Chem. Soc. 1992, 114, 4354. doi: 10.1021/ja00037a048
-
[14]
(14) Wu,W.; Gu, J.; Song, J.; Shaik, S.; Hiberty, P. C. Angew. Chem. Int. Edit. 2009, 48, 1407. doi: 10.1002/anie.v48:8
-
[15]
(15) Danovich, S. D.;Wu,W.; Hiberty, P. C. Nat. Chem. 2009, 1, 443. doi: 10.1038/nchem.327
-
[16]
(16) Shaik, S.; Chen, Z. H.;Wu,W.; Stanger, A.; Danovich, D.; Hiberty, P. C. ChemPhysChem 2009, 10, 2658. doi: 10.1002/cphc.v10:15
-
[17]
(17) Gershoni-Poranne, R.; Stanger, A. ChemPhysChem 2012, 13, 2377. doi: 10.1002/cphc.v13.9
-
[18]
(18) Eaton, P. E.; Temme, G. H. J. Am. Chem. Soc. 1973, 95, 7508. doi: 10.1021/ja00803a052
-
[19]
(19) Wiberg, K. B.;Walker, F. H.; Michl, J. J. Am. Chem. Soc. 1982, 104, 2056. doi: 10.1021/ja00371a059
-
[20]
(20) Hamon, D. P. G.; Trenerry, V. C. J. Am. Chem. Soc. 1981, 103, 4962. doi: 10.1021/ja00406a059
-
[21]
(21) Szeimies, S. U.; Szeimies, G. J. Am. Chem. Soc. 1978, 100, 3966. doi: 10.1021/ja00480a072
-
[22]
(22) Gassman, P. G.; Proehl, G. S. J. Am. Chem. Soc. 1980, 102, 6862. doi: 10.1021/ja00542a040
-
[23]
(23) Mlinaric-Majerski, K.; Majerski, Z. J. Am. Chem. Soc. 1980, 102, 1418. doi: 10.1021/ja00524a033
-
[24]
(24) Wiberg, K. B.; Burgmaier, G. J. Am. Chem. Soc. 1972, 94, 7396. doi: 10.1021/ja00776a022
-
[25]
(25) Aue, D. H.; Reynolds, R. N. J. Org. Chem. 1974, 39, 2315. doi: 10.1021/jo00929a051
-
[26]
(26) Schleyer, P. v. R.; Janoschek, R. P. Angew. Chem. 1987, 26, 1267.
-
[27]
(27) Nagase, S.; Kudo, T. Organometallics 1987, 6, 2456. doi: 10.1021/om00154a034
-
[28]
(28) Tsumuraya, T.; Batcheller, S. A.; Masamune, S. Angew. Chem. 1991, 30, 902.
-
[29]
(29) Galle -Planas, N.; Whitehead, M. A. J. Mol. Struct. -Theochem 1992, 260, 419. doi: 10.1016/0166-1280(92)87057-7
-
[30]
(30) Holder, A. J.; Earley, C.W. J. Mol. Struct. -Theochem 1993,281, 131. doi: 10.1016/0166-1280(93)87070-T
-
[31]
(31) Karni, M.; Apeloig, Y.; Kapp, J.; Schleyer, P. v. R. In The Chemistry of Organic Silicon Compounds; JohnWiley & Sons: New York, 2001; pp 1-163.
-
[32]
(32) Nied, D.; Koppe, R;. Klopper,W.; Schnockel, H.; Breher, F. S. J. Am. Chem. Soc. 2010, 132, 10264. doi: 10.1021/ja104810u
-
[33]
(33) Nied, D.; Oña-Bur s, P.; Klopper,W.; Breher, F. Organometallics 2011, 30, 1419. doi: 10.1021/om100977z
-
[34]
(34) Richards, A. F.; Brynda, M.; Power, P. P. Organometallics 2004, 23, 4009. doi: 10.1021/om0497137
-
[35]
(35) Ito, Y.; Lee, V. Y.; rnitzka, H.; edecke, C.; Frenking, G.; Sekiguchi, A. J. Am. Chem. Soc. 2013, 135, 6770. doi: 10.1021/ja401650q
-
[36]
(36) Yoshida, H.; Takahara, Y.; Erata, T.; Ando,W. J. Am. Chem. Soc. 1992, 114, 1098. doi: 10.1021/ja00029a055
-
[37]
(37) Monakhov, K. Y.; urlaouen, C. Organometallics 2012, 31, 4415. doi: 10.1021/om300180e
-
[38]
(38) Daly, A. M.; Tanjaroon, C.; Marwitz, A. V.; Liu, S. Y.; Kukolich, S. G. J. Am. Chem. Soc. 2010, 132, 5501.
-
[39]
(39) Liu, Z. Q.; Marder, T. B. Angew. Chem. Int. Edit. 2008, 47, 242.
-
[40]
(40) Song, Y.; Chen, H. S.; Zhang, C. R.;Wang, G. H. Acta Phys. -Chim. Sin. 2005, 21, 735. [宋燕, 陈宏善, 张材荣, 王广厚. 物理化学学报, 2005, 21, 735.] doi: 10.3866/PKU. WHXB20050708
-
[41]
(41) Hohenberg, P.; Kohn,W. Phys. Rev. 1964, 136, B864.
-
[42]
(42) Kohn,W.; Sham, L. Phys. Rev. 1965, 140, A1133.
-
[43]
(43) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
-
[44]
(44) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
-
[45]
(45) Reed, A. E.; Curtiss, L. A.;Weinhold, F. Chem. Rev. 1988, 88, 899. doi: 10.1021/cr00088a005
-
[46]
(46) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108, 4439. doi: 10.1063/1.475855
-
[47]
(47) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et. al. Gaussian 03, Revision C.02; Gaussian Inc.:Wallingford, CT, 2003.
-
[48]
(48) Biegler-Koning, F. J.; Derdau, R.; Bayles, D.; Bader, R. F.W. AIM2000, Version1, 2000.
-
[49]
(49) Lei, X. L.; Zhu, H. J.;Wang, X. M.; Luo, Y. H. Acta Phys. -Chim. Sin. 2008, 24, 1655. [雷雪玲, 祝恒江, 王先明, 罗有华. 物理化学学报, 2008, 24, 1655.] doi: 10.3866/PKU.WHXB20080922
-
[1]
-
-
-
[1]
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
-
[2]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[3]
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
-
[4]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[5]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[6]
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
-
[7]
Xuewei BA , Cheng CHENG , Huaikang ZHANG , Deqing ZHANG , Shuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7∶xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096
-
[8]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[9]
Renqing Lü , Shutao Wang , Fang Wang , Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119
-
[10]
Xiangyu Chen , Aihao Xu , Dong Wei , Fang Huang , Junjie Ma , Huibing He , Jing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175
-
[11]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[12]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[13]
Le Ye , Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257
-
[14]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[15]
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
-
[16]
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
-
[17]
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
-
[18]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[19]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
-
[20]
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
-
[1]
Metrics
- PDF Downloads(616)
- Abstract views(763)
- HTML views(17)