Citation: LI Jin-Xia, ZHANG Cong-Jie. Structures and Properties of BX[(CH2)n]3 and BX(CH2)[CH(CH2)nCH] (X=N, P) with the [n.n.n]propellane Configuration[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 423-430. doi: 10.3866/PKU.WHXB201312251
-
We have designed a family of novel molecules BX[(CH2)n]3 and BX(CH2)[CH(CH2)nCH] (X=N, P) with the [n.n.n]propellane configuration (n=1-6). The structures, stabilities, chemical bonds, and electronic spectra of these structures were investigated using density functional theory (DFT). The calculated results indicate that all of these compounds are situated at minima on the potential energy surfaces. The energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of BN[(CH2)n]3 and BP[(CH2)n]3 (n=1-6) were in the range of 5.24-7.07 eV and 5.47-7.33 eV, respectively, and the energy gap of BX[CH2]3 is close to that of C5H6. In addition, the energy gaps of BN(CH2) [CH(CH2)nCH] and BP(CH2) [CH(CH2)nCH] (n=1-6) are around 6.80 eV. To compare the relative stabilities of these compounds, we investigated the second-order differences of energies. The results indicate that BN[(CH2)3]3, BP[(CH2)4]3, and BX(CH2)[CH(CH2)2CH] (X=N, P) are more stable than the other structures. Moreover, based on the bond lengths, Wiberg bond indices, and charges of the two"inverted"atoms, it can be concluded that the bridgehead B and N(P) atoms in BN[(CH2)n]3 (n=2, 6) and BP[(CH2)2]3 do not form chemical bonds, while the two bridgehead atoms in the other compounds studied formed chemical bonds. Additionally, topological analysis of the electron density using the theory of atoms-in-molecules shows that the inverted N―B bonds in BN[(CH2)n]3 (n=3-5) are ionic bonds whereas the B―P bonds in BP[(CH2)n]3 (n=3-6) have covalent character. The vertical transition energies of BN[(CH2)n]3, BP[(CH2)n]3, BN(CH2) [CH(CH2)nCH], and BP(CH2) [CH(CH2)nCH] (n=1-6) range from 191.1 to 284.8 nm, 191.8 to 270.1 nm, 190.5 to 199.7 nm, and 209.0 to 221.3 nm, respectively.
-
-
[1]
(1) Wiberg, K. B. Chem. Rev. 1989, 89, 975. doi: 10.1021/cr00095a001
-
[2]
(2) Wiberg, K. B.;Walker, F. H. J. Am. Chem. Soc. 1982, 104, 5239. doi: 10.1021/ja00383a046
-
[3]
(3) Wiberg, K. B.;Walker, S. T.; Rosenberg, R. E. J. Am. Chem. Soc. 1990, 112, 2184. doi: 10.1021/ja00162a021
-
[4]
(4) Jackson, J. E.; Allen, L. C. J. Am. Chem. Soc. 1984, 106, 591. doi: 10.1021/ja00315a022
-
[5]
(5) Feller, D.; Davidson, E. R. J. Am. Chem. Soc. 1987, 109, 4133. doi: 10.1021/ja00248a001
-
[6]
(6) Mcgarry, P. F.; Johnsoton, L. J.; Scaiano, J. C. J. Org. Chem. 1989, 54, 6133. doi: 10.1021/jo00287a033
-
[7]
(7) Wiberg, K. B. Accounts Chem. Res. 1984, 17, 379. doi: 10.1021/ar00107a001
-
[8]
(8) Wiberg, K. B. J. Am. Chem. Soc. 1983, 105, 1227. doi: 10.1021/ja00343a025
-
[9]
(9) Epiotis, N. D. J. Am. Chem. Soc. 1984, 106, 3170. doi: 10.1021/ja00323a018
-
[10]
(10) Zhao, C. Y.;Wei, T. S.; Qiu,W. Y. Acta Chim. Sin. 1991, 49, 546. [赵存元, 韦统帅, 邱文元. 化学学报, 1991, 49, 546.]
-
[11]
(11) Honegger, E.; Huber, H.; Heilbronner, E.; Dailey,W. P.;Wiberg, K. B. J. Am. Chem. Soc. 1985, 107, 7172. doi: 10.1021/ja00310a068
-
[12]
(12) Messmer, R. P.; Schultz, P. A. J. Am. Chem. Soc. 1986, 108, 7407. doi: 10.1021/ja00283a045
-
[13]
(13) Riggs, N. V.; Zoller, U.; Nguyen, M. T.; Radom, L. J. Am. Chem. Soc. 1992, 114, 4354. doi: 10.1021/ja00037a048
-
[14]
(14) Wu,W.; Gu, J.; Song, J.; Shaik, S.; Hiberty, P. C. Angew. Chem. Int. Edit. 2009, 48, 1407. doi: 10.1002/anie.v48:8
-
[15]
(15) Danovich, S. D.;Wu,W.; Hiberty, P. C. Nat. Chem. 2009, 1, 443. doi: 10.1038/nchem.327
-
[16]
(16) Shaik, S.; Chen, Z. H.;Wu,W.; Stanger, A.; Danovich, D.; Hiberty, P. C. ChemPhysChem 2009, 10, 2658. doi: 10.1002/cphc.v10:15
-
[17]
(17) Gershoni-Poranne, R.; Stanger, A. ChemPhysChem 2012, 13, 2377. doi: 10.1002/cphc.v13.9
-
[18]
(18) Eaton, P. E.; Temme, G. H. J. Am. Chem. Soc. 1973, 95, 7508. doi: 10.1021/ja00803a052
-
[19]
(19) Wiberg, K. B.;Walker, F. H.; Michl, J. J. Am. Chem. Soc. 1982, 104, 2056. doi: 10.1021/ja00371a059
-
[20]
(20) Hamon, D. P. G.; Trenerry, V. C. J. Am. Chem. Soc. 1981, 103, 4962. doi: 10.1021/ja00406a059
-
[21]
(21) Szeimies, S. U.; Szeimies, G. J. Am. Chem. Soc. 1978, 100, 3966. doi: 10.1021/ja00480a072
-
[22]
(22) Gassman, P. G.; Proehl, G. S. J. Am. Chem. Soc. 1980, 102, 6862. doi: 10.1021/ja00542a040
-
[23]
(23) Mlinaric-Majerski, K.; Majerski, Z. J. Am. Chem. Soc. 1980, 102, 1418. doi: 10.1021/ja00524a033
-
[24]
(24) Wiberg, K. B.; Burgmaier, G. J. Am. Chem. Soc. 1972, 94, 7396. doi: 10.1021/ja00776a022
-
[25]
(25) Aue, D. H.; Reynolds, R. N. J. Org. Chem. 1974, 39, 2315. doi: 10.1021/jo00929a051
-
[26]
(26) Schleyer, P. v. R.; Janoschek, R. P. Angew. Chem. 1987, 26, 1267.
-
[27]
(27) Nagase, S.; Kudo, T. Organometallics 1987, 6, 2456. doi: 10.1021/om00154a034
-
[28]
(28) Tsumuraya, T.; Batcheller, S. A.; Masamune, S. Angew. Chem. 1991, 30, 902.
-
[29]
(29) Galle -Planas, N.; Whitehead, M. A. J. Mol. Struct. -Theochem 1992, 260, 419. doi: 10.1016/0166-1280(92)87057-7
-
[30]
(30) Holder, A. J.; Earley, C.W. J. Mol. Struct. -Theochem 1993,281, 131. doi: 10.1016/0166-1280(93)87070-T
-
[31]
(31) Karni, M.; Apeloig, Y.; Kapp, J.; Schleyer, P. v. R. In The Chemistry of Organic Silicon Compounds; JohnWiley & Sons: New York, 2001; pp 1-163.
-
[32]
(32) Nied, D.; Koppe, R;. Klopper,W.; Schnockel, H.; Breher, F. S. J. Am. Chem. Soc. 2010, 132, 10264. doi: 10.1021/ja104810u
-
[33]
(33) Nied, D.; Oña-Bur s, P.; Klopper,W.; Breher, F. Organometallics 2011, 30, 1419. doi: 10.1021/om100977z
-
[34]
(34) Richards, A. F.; Brynda, M.; Power, P. P. Organometallics 2004, 23, 4009. doi: 10.1021/om0497137
-
[35]
(35) Ito, Y.; Lee, V. Y.; rnitzka, H.; edecke, C.; Frenking, G.; Sekiguchi, A. J. Am. Chem. Soc. 2013, 135, 6770. doi: 10.1021/ja401650q
-
[36]
(36) Yoshida, H.; Takahara, Y.; Erata, T.; Ando,W. J. Am. Chem. Soc. 1992, 114, 1098. doi: 10.1021/ja00029a055
-
[37]
(37) Monakhov, K. Y.; urlaouen, C. Organometallics 2012, 31, 4415. doi: 10.1021/om300180e
-
[38]
(38) Daly, A. M.; Tanjaroon, C.; Marwitz, A. V.; Liu, S. Y.; Kukolich, S. G. J. Am. Chem. Soc. 2010, 132, 5501.
-
[39]
(39) Liu, Z. Q.; Marder, T. B. Angew. Chem. Int. Edit. 2008, 47, 242.
-
[40]
(40) Song, Y.; Chen, H. S.; Zhang, C. R.;Wang, G. H. Acta Phys. -Chim. Sin. 2005, 21, 735. [宋燕, 陈宏善, 张材荣, 王广厚. 物理化学学报, 2005, 21, 735.] doi: 10.3866/PKU. WHXB20050708
-
[41]
(41) Hohenberg, P.; Kohn,W. Phys. Rev. 1964, 136, B864.
-
[42]
(42) Kohn,W.; Sham, L. Phys. Rev. 1965, 140, A1133.
-
[43]
(43) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
-
[44]
(44) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
-
[45]
(45) Reed, A. E.; Curtiss, L. A.;Weinhold, F. Chem. Rev. 1988, 88, 899. doi: 10.1021/cr00088a005
-
[46]
(46) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108, 4439. doi: 10.1063/1.475855
-
[47]
(47) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et. al. Gaussian 03, Revision C.02; Gaussian Inc.:Wallingford, CT, 2003.
-
[48]
(48) Biegler-Koning, F. J.; Derdau, R.; Bayles, D.; Bader, R. F.W. AIM2000, Version1, 2000.
-
[49]
(49) Lei, X. L.; Zhu, H. J.;Wang, X. M.; Luo, Y. H. Acta Phys. -Chim. Sin. 2008, 24, 1655. [雷雪玲, 祝恒江, 王先明, 罗有华. 物理化学学报, 2008, 24, 1655.] doi: 10.3866/PKU.WHXB20080922
-
[1]
-
-
[1]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[2]
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
-
[3]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[4]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[5]
Le Ye , Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257
-
[6]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[7]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[8]
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
-
[9]
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
-
[10]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
-
[11]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[12]
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
-
[13]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[14]
Kunyao Peng , Xianbin Wang , Xingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274
-
[15]
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
-
[16]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[17]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[18]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[19]
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
-
[20]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[1]
Metrics
- PDF Downloads(616)
- Abstract views(705)
- HTML views(13)