Citation: LI Jin-Xia, ZHANG Cong-Jie. Structures and Properties of BX[(CH2)n]3 and BX(CH2)[CH(CH2)nCH] (X=N, P) with the [n.n.n]propellane Configuration[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 423-430. doi: 10.3866/PKU.WHXB201312251 shu

Structures and Properties of BX[(CH2)n]3 and BX(CH2)[CH(CH2)nCH] (X=N, P) with the [n.n.n]propellane Configuration

  • Received Date: 26 September 2013
    Available Online: 25 December 2013

    Fund Project: 国家自然科学基金(21373133)资助项目 (21373133)

  • We have designed a family of novel molecules BX[(CH2)n]3 and BX(CH2)[CH(CH2)nCH] (X=N, P) with the [n.n.n]propellane configuration (n=1-6). The structures, stabilities, chemical bonds, and electronic spectra of these structures were investigated using density functional theory (DFT). The calculated results indicate that all of these compounds are situated at minima on the potential energy surfaces. The energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of BN[(CH2)n]3 and BP[(CH2)n]3 (n=1-6) were in the range of 5.24-7.07 eV and 5.47-7.33 eV, respectively, and the energy gap of BX[CH2]3 is close to that of C5H6. In addition, the energy gaps of BN(CH2) [CH(CH2)nCH] and BP(CH2) [CH(CH2)nCH] (n=1-6) are around 6.80 eV. To compare the relative stabilities of these compounds, we investigated the second-order differences of energies. The results indicate that BN[(CH2)3]3, BP[(CH2)4]3, and BX(CH2)[CH(CH2)2CH] (X=N, P) are more stable than the other structures. Moreover, based on the bond lengths, Wiberg bond indices, and charges of the two"inverted"atoms, it can be concluded that the bridgehead B and N(P) atoms in BN[(CH2)n]3 (n=2, 6) and BP[(CH2)2]3 do not form chemical bonds, while the two bridgehead atoms in the other compounds studied formed chemical bonds. Additionally, topological analysis of the electron density using the theory of atoms-in-molecules shows that the inverted N―B bonds in BN[(CH2)n]3 (n=3-5) are ionic bonds whereas the B―P bonds in BP[(CH2)n]3 (n=3-6) have covalent character. The vertical transition energies of BN[(CH2)n]3, BP[(CH2)n]3, BN(CH2) [CH(CH2)nCH], and BP(CH2) [CH(CH2)nCH] (n=1-6) range from 191.1 to 284.8 nm, 191.8 to 270.1 nm, 190.5 to 199.7 nm, and 209.0 to 221.3 nm, respectively.

  • 加载中
    1. [1]

      (1) Wiberg, K. B. Chem. Rev. 1989, 89, 975. doi: 10.1021/cr00095a001

    2. [2]

      (2) Wiberg, K. B.;Walker, F. H. J. Am. Chem. Soc. 1982, 104, 5239. doi: 10.1021/ja00383a046

    3. [3]

      (3) Wiberg, K. B.;Walker, S. T.; Rosenberg, R. E. J. Am. Chem. Soc. 1990, 112, 2184. doi: 10.1021/ja00162a021

    4. [4]

      (4) Jackson, J. E.; Allen, L. C. J. Am. Chem. Soc. 1984, 106, 591. doi: 10.1021/ja00315a022

    5. [5]

      (5) Feller, D.; Davidson, E. R. J. Am. Chem. Soc. 1987, 109, 4133. doi: 10.1021/ja00248a001

    6. [6]

      (6) Mcgarry, P. F.; Johnsoton, L. J.; Scaiano, J. C. J. Org. Chem. 1989, 54, 6133. doi: 10.1021/jo00287a033

    7. [7]

      (7) Wiberg, K. B. Accounts Chem. Res. 1984, 17, 379. doi: 10.1021/ar00107a001

    8. [8]

      (8) Wiberg, K. B. J. Am. Chem. Soc. 1983, 105, 1227. doi: 10.1021/ja00343a025

    9. [9]

      (9) Epiotis, N. D. J. Am. Chem. Soc. 1984, 106, 3170. doi: 10.1021/ja00323a018

    10. [10]

      (10) Zhao, C. Y.;Wei, T. S.; Qiu,W. Y. Acta Chim. Sin. 1991, 49, 546. [赵存元, 韦统帅, 邱文元. 化学学报, 1991, 49, 546.]

    11. [11]

      (11) Honegger, E.; Huber, H.; Heilbronner, E.; Dailey,W. P.;Wiberg, K. B. J. Am. Chem. Soc. 1985, 107, 7172. doi: 10.1021/ja00310a068

    12. [12]

      (12) Messmer, R. P.; Schultz, P. A. J. Am. Chem. Soc. 1986, 108, 7407. doi: 10.1021/ja00283a045

    13. [13]

      (13) Riggs, N. V.; Zoller, U.; Nguyen, M. T.; Radom, L. J. Am. Chem. Soc. 1992, 114, 4354. doi: 10.1021/ja00037a048

    14. [14]

      (14) Wu,W.; Gu, J.; Song, J.; Shaik, S.; Hiberty, P. C. Angew. Chem. Int. Edit. 2009, 48, 1407. doi: 10.1002/anie.v48:8

    15. [15]

      (15) Danovich, S. D.;Wu,W.; Hiberty, P. C. Nat. Chem. 2009, 1, 443. doi: 10.1038/nchem.327

    16. [16]

      (16) Shaik, S.; Chen, Z. H.;Wu,W.; Stanger, A.; Danovich, D.; Hiberty, P. C. ChemPhysChem 2009, 10, 2658. doi: 10.1002/cphc.v10:15

    17. [17]

      (17) Gershoni-Poranne, R.; Stanger, A. ChemPhysChem 2012, 13, 2377. doi: 10.1002/cphc.v13.9

    18. [18]

      (18) Eaton, P. E.; Temme, G. H. J. Am. Chem. Soc. 1973, 95, 7508. doi: 10.1021/ja00803a052

    19. [19]

      (19) Wiberg, K. B.;Walker, F. H.; Michl, J. J. Am. Chem. Soc. 1982, 104, 2056. doi: 10.1021/ja00371a059

    20. [20]

      (20) Hamon, D. P. G.; Trenerry, V. C. J. Am. Chem. Soc. 1981, 103, 4962. doi: 10.1021/ja00406a059

    21. [21]

      (21) Szeimies, S. U.; Szeimies, G. J. Am. Chem. Soc. 1978, 100, 3966. doi: 10.1021/ja00480a072

    22. [22]

      (22) Gassman, P. G.; Proehl, G. S. J. Am. Chem. Soc. 1980, 102, 6862. doi: 10.1021/ja00542a040

    23. [23]

      (23) Mlinaric-Majerski, K.; Majerski, Z. J. Am. Chem. Soc. 1980, 102, 1418. doi: 10.1021/ja00524a033

    24. [24]

      (24) Wiberg, K. B.; Burgmaier, G. J. Am. Chem. Soc. 1972, 94, 7396. doi: 10.1021/ja00776a022

    25. [25]

      (25) Aue, D. H.; Reynolds, R. N. J. Org. Chem. 1974, 39, 2315. doi: 10.1021/jo00929a051

    26. [26]

      (26) Schleyer, P. v. R.; Janoschek, R. P. Angew. Chem. 1987, 26, 1267.

    27. [27]

      (27) Nagase, S.; Kudo, T. Organometallics 1987, 6, 2456. doi: 10.1021/om00154a034

    28. [28]

      (28) Tsumuraya, T.; Batcheller, S. A.; Masamune, S. Angew. Chem. 1991, 30, 902.

    29. [29]

      (29) Galle -Planas, N.; Whitehead, M. A. J. Mol. Struct. -Theochem 1992, 260, 419. doi: 10.1016/0166-1280(92)87057-7

    30. [30]

      (30) Holder, A. J.; Earley, C.W. J. Mol. Struct. -Theochem 1993,281, 131. doi: 10.1016/0166-1280(93)87070-T

    31. [31]

      (31) Karni, M.; Apeloig, Y.; Kapp, J.; Schleyer, P. v. R. In The Chemistry of Organic Silicon Compounds; JohnWiley & Sons: New York, 2001; pp 1-163.

    32. [32]

      (32) Nied, D.; Koppe, R;. Klopper,W.; Schnockel, H.; Breher, F. S. J. Am. Chem. Soc. 2010, 132, 10264. doi: 10.1021/ja104810u

    33. [33]

      (33) Nied, D.; Oña-Bur s, P.; Klopper,W.; Breher, F. Organometallics 2011, 30, 1419. doi: 10.1021/om100977z

    34. [34]

      (34) Richards, A. F.; Brynda, M.; Power, P. P. Organometallics 2004, 23, 4009. doi: 10.1021/om0497137

    35. [35]

      (35) Ito, Y.; Lee, V. Y.; rnitzka, H.; edecke, C.; Frenking, G.; Sekiguchi, A. J. Am. Chem. Soc. 2013, 135, 6770. doi: 10.1021/ja401650q

    36. [36]

      (36) Yoshida, H.; Takahara, Y.; Erata, T.; Ando,W. J. Am. Chem. Soc. 1992, 114, 1098. doi: 10.1021/ja00029a055

    37. [37]

      (37) Monakhov, K. Y.; urlaouen, C. Organometallics 2012, 31, 4415. doi: 10.1021/om300180e

    38. [38]

      (38) Daly, A. M.; Tanjaroon, C.; Marwitz, A. V.; Liu, S. Y.; Kukolich, S. G. J. Am. Chem. Soc. 2010, 132, 5501.

    39. [39]

      (39) Liu, Z. Q.; Marder, T. B. Angew. Chem. Int. Edit. 2008, 47, 242.

    40. [40]

      (40) Song, Y.; Chen, H. S.; Zhang, C. R.;Wang, G. H. Acta Phys. -Chim. Sin. 2005, 21, 735. [宋燕, 陈宏善, 张材荣, 王广厚. 物理化学学报, 2005, 21, 735.] doi: 10.3866/PKU. WHXB20050708

    41. [41]

      (41) Hohenberg, P.; Kohn,W. Phys. Rev. 1964, 136, B864.

    42. [42]

      (42) Kohn,W.; Sham, L. Phys. Rev. 1965, 140, A1133.

    43. [43]

      (43) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

    44. [44]

      (44) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785

    45. [45]

      (45) Reed, A. E.; Curtiss, L. A.;Weinhold, F. Chem. Rev. 1988, 88, 899. doi: 10.1021/cr00088a005

    46. [46]

      (46) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108, 4439. doi: 10.1063/1.475855

    47. [47]

      (47) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et. al. Gaussian 03, Revision C.02; Gaussian Inc.:Wallingford, CT, 2003.

    48. [48]

      (48) Biegler-Koning, F. J.; Derdau, R.; Bayles, D.; Bader, R. F.W. AIM2000, Version1, 2000.

    49. [49]

      (49) Lei, X. L.; Zhu, H. J.;Wang, X. M.; Luo, Y. H. Acta Phys. -Chim. Sin. 2008, 24, 1655. [雷雪玲, 祝恒江, 王先明, 罗有华. 物理化学学报, 2008, 24, 1655.] doi: 10.3866/PKU.WHXB20080922


  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    2. [2]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    3. [3]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    4. [4]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    5. [5]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    7. [7]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    8. [8]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    9. [9]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    10. [10]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    11. [11]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    14. [14]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    15. [15]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    16. [16]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    17. [17]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    18. [18]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    19. [19]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    20. [20]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

Metrics
  • PDF Downloads(616)
  • Abstract views(763)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return