Citation: LIU Dan-Dan, XIE Yong-Min, LIU Jiang, WANG Jin-Xia. Preparation of NiO-YSZ-Graphite Aqueous Slurry and Its Application in Fabricating Solid Oxide Fuel Cells by Slip-Casting[J]. Acta Physico-Chimica Sinica, ;2014, 30(2): 331-337. doi: 10.3866/PKU.WHXB201312241 shu

Preparation of NiO-YSZ-Graphite Aqueous Slurry and Its Application in Fabricating Solid Oxide Fuel Cells by Slip-Casting

  • Received Date: 22 October 2013
    Available Online: 24 December 2013

    Fund Project: 国家自然科学基金(21276097) (21276097)浙江省自然科学基金(Y1090035)资助项目 (Y1090035)

  • Cermet of Ni-YSZ (yttrium-stabilized zirconia) is commonly used as the anode material of solid oxide fuel cells (SOFCs) and the properties of the NiO-YSZ slurry has a significant effect on the performance of SOFCs prepared by wet processes. The stability of the NiO-YSZ slurry was investigated through zeta potential analysis. The effects of six dispersants on the surface zeta potentials of NiO and YSZ were examined. It was found that the zeta potential of NiO was opposite to that of YSZ when the anionic or amphoteric dispersant existed. When the cationic dispersant poly(diallyldimethylammonium chloride) (PDAC) was used, the zeta potentials for both NiO and YSZ were positive and they could be simultaneously suspended in water. By adding graphite, which is used as the pore former when fabricating the SOFC anode, into the NiO-YSZ suspension and using polyvinylpyrrolidone (PVP) as the dispersant of graphite, a stable NiO-YSZgraphite aqueous slurry was successfully prepared. The slurry was used to fabricate anode supports for SOFCs with the slip-casting technique. A typical single anode-supported SOFC showed a maximum power density of 509 mW·cm-2 at 800℃. The microstructure of the SOFC with the anode support was examined by scanning electron microscope (SEM) analysis and it was found that the electrolyte and anode bonded well and the pores were homogenously distributed in the anode.

  • 加载中
    1. [1]

      (1) Minh, N. Q.; Singhal, C.;Williams, M. ECS Transactions 2009,17 (1), 211.

    2. [2]

      (2) Tang, Y. B.; Liu, J. Acta Physico-Chimica Sinica 2010, 26 (5),1191. [唐玉宝, 刘江. 物理化学学报, 2010, 26 (5), 1191.]doi: 10.3866/PKU.WHXB20100502

    3. [3]

      (3) Liu, M.; Dong, D.; Peng, R.; Gao, J.; Diwu, J.; Liu, X.; Meng,G. Journal of Power Sources 2008, 180 (1), 215. doi: 10.1016/j.jpowsour.2008.01.066

    4. [4]

      (4) Koide, H.; Someya, Y.; Yoshida, T.; Maruyama, T. Solid State Ionics 2000, 132 (3-4), 253.

    5. [5]

      (5) Dong, J.; Cheng, Z.; Zha, S.; Liu, M. Journal of Power Sources2006, 156 (2), 461. doi: 10.1016/j.jpowsour.2005.06.016

    6. [6]

      (6) He, T.; Lu, Z.; Huang, Y.; Guan, P.; Liu, J.; Su,W. Journal of Alloys and Compounds 2002, 337 (1-2), 231.

    7. [7]

      (7) Ding, J.; Liu, J.; Yuan,W.; Zhang, Y. Journal of the European Ceramic Society 2008, 28 (16), 3113. doi: 10.1016/j.jeurceramsoc.2008.05.033

    8. [8]

      (8) Zhang, L.; He, H. Q.; Kwek,W. R.; Ma, J.; Tang, E. H.; Jiang,S. P. Journal of the American Ceramic Society 2009, 92 (2), 302.doi: 10.1111/jace.2009.92.issue-2

    9. [9]

      (9) Ramanathan, S.; Krishnakumar, K. P.; De, P. K.; Banerjee, S.Journal of Materials Science 2004, 39 (10), 3339. doi: 10.1023/B:JMSC.0000026934.88520.67

    10. [10]

      (10) Zhang, Y.; Liu, J.; Yin, J.; Yuan,W.; Sui, J. International Journal of Applied Ceramic Technology 2008, 5 (6), 568. doi: 10.1111/ijac.2008.5.issue-6

    11. [11]

      (11) Ding, J.; Liu, J. Journal of Power Sources 2009, 193 (2), 769.doi: 10.1016/j.jpowsour.2009.04.049

    12. [12]

      (12) Zürcher, S.; Graule, T. Journal of the European Ceramic Society2005, 25 (6), 863. doi: 10.1016/j.jeurceramsoc.2004.05.002

    13. [13]

      (13) Lewis, J. A. Journal of the American Ceramic Society 2000, 83 (10), 2341.

    14. [14]

      (14) Arevalo-Quintero, O.;Waldbillig, D.; Kesler, O. Surface and Coatings Technology 2011, 205 (21-22), 5218.

    15. [15]

      (15) Zhang, L.; Jiang, S. P.;Wang,W.; Zhang, Y. Journal of Power Sources 2007, 170 (1), 55. doi: 10.1016/j.jpowsour.2007.03.080

    16. [16]

      (16) Fonseca, C. G.; Basaglia, R. M. F.; Brant, M. C.; Matencio, T.;Domingues, R. Z. Powder Technology 2009, 192 (3), 352. doi: 10.1016/j.powtec.2009.01.022

    17. [17]

      (17) Ramanathan, S.; Kakade, M. B. International Journal of Hydrogen Energy 2011, 36 (22), 14956. doi: 10.1016/j.ijhydene.2011.06.112

    18. [18]

      (18) Ding, J.; Liu, J. Solid State Ionics 2008, 179 (21-26), 1246.

    19. [19]

      (19) Zhu, H.; Zhang, C.; Tang, Y.;Wang, J.; Ren, B.; Yin, Y. Carbon2007, 45, 203. doi: 10.1016/j.carbon.2006.10.007

    20. [20]

      (20) Moon, H.; Kim, S. D.; Park, E.W.; Hyun, S. H.; Kim, H. S.International Journal of Hydrogen Energy 2008, 33 (11),2826. doi: 10.1016/j.ijhydene.2008.03.024

    21. [21]

      (21) Bai, Y.; Liu, J.; Gao, H.; Jin, C. Journal of Alloys and Compounds 2009, 480 (2), 554. doi: 10.1016/j.jallcom.2009.01.089

    22. [22]

      (22) Jin, C.; Liu, J.; Li, L.; Bai, Y. Journal of Membrane Science2009, 341 (1-2), 233.

    23. [23]

      (23) Bai, Y.; Liu, J.;Wang, C. International Journal of Hydrogen Energy 2009, 34 (17), 7311. doi: 10.1016/j.ijhydene.2009.07.004

    24. [24]

      (24) Greenwood, R. Advances in Colloid and Interface Science 2003,106 (1-3), 55.

    25. [25]

      (25) Fu, Y. P.; Chen, S. H. Ceramics International 2009, 35 (2), 821.doi: 10.1016/j.ceramint.2008.02.018

    26. [26]

      (26) Greenwood, R.; Kendall, K. Journal of the European Ceramic Society 2000, 20 (1), 77. doi: 10.1016/S0955-2219(99)00091-6

    27. [27]

      (27) Zhang, Y.; Gao, J.; Peng, D.; Guangyao, M.; Liu, X. Ceramics International 2004, 30 (6), 1049. doi: 10.1016/j.ceramint.2003.10.026

    28. [28]

      (28) Wang, Y. H.; Liu, X. Q.; Meng, G. Y. Ceramics International2007, 33 (6), 1025. doi: 10.1016/j.ceramint.2006.03.011

    29. [29]

      (29) Richardson, J.; Orte , J., Jr.; Coute, N.; Twigg, M. Catal Lett.1996, 41 (1-2), 17. doi: 10.1007/BF00811706


  • 加载中
    1. [1]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    2. [2]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    3. [3]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    4. [4]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    5. [5]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    6. [6]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    7. [7]

      Jianfu Zhang Wei Bai Juan Hou Chenyang Zou . Reform and Practice of “Project-Patent- Scholarly Paper” Integrated Teaching Mode: Taking “Polymer Processing” Course as an Example. University Chemistry, 2025, 40(4): 138-146. doi: 10.12461/PKU.DXHX202408138

    8. [8]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    9. [9]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    10. [10]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    11. [11]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    12. [12]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    13. [13]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    14. [14]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    15. [15]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    16. [16]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    17. [17]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    18. [18]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    19. [19]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(485)
  • Abstract views(1072)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return