Citation: HE Yuan-Yuan, ZHANG Jin-Jiang, ZHAO Jian-Wei. Influence of Graphene with Different Oxidation Degrees on Nickel Hydroxide Pseudocapacitor Characterization[J]. Acta Physico-Chimica Sinica, ;2014, 30(2): 297-304. doi: 10.3866/PKU.WHXB201312233
-
We designed a series of models of reduced graphene oxide sheets (rGNOs) with different oxidation degrees and then studied the interactions between oxidation defects on rGNOs and nickel hydroxide (Ni(OH)2) using density functional theory (DFT). The adsorption energy between the oxygen-containing groups on rGNOs and Ni(OH)2 is dependent on the oxidation degree of rGNOs. The variations of atomic distances and charge distribution of the oxide-defected graphene after absorbing Ni(OH)2 suggested that the oxygen-containing groups on rGNOs improve the characteristics of Ni(OH)2 as a pseudocapacitor. These theoretical results agree well with available experimental observations and give an explanation for some experimental results. We also introduce a simple potentiostatic electrodeposition method, with which Ni(OH)2 nanoparticles about 5 nm in diameter were effectively dispersed on the substrate via induction of oxidation defects on rGNOs. In the fabrication of Ni(OH)2/rGNOs, electrochemical reduction of graphene oxide is the key process. The stronger adsorption results in Ni(OH)2/rGNOs have higher rate pseudocapacitance (1591 F·g-1 at 5 mV·s-1) compared with that of Ni(OH)2 on bare nickel (656 F·g-1 at 5 mV·s-1). The variations of the geometries and charge distributions of the rGNOs after absorbing Ni(OH)2 lead to the lower equivalent series resistance and better frequency response of Ni(OH)2/rGNOs than Ni(OH)2/Ni. The high capacitance of Ni(OH)2/rGNOs indicates that Ni(OH)2/rGNOs have the potential of being used as the electrode material of pseudocapacitors.
-
-
[1]
(1) Levi, E.; fer, Y.; Aurbach, D. Chem. Mater. 2010, 22, 860.doi: 10.1021/cm9016497
-
[2]
(2) Yuan, Y. F.; Xia, X. H.;Wu, J. B.; Yang, J. L.; Chen, Y. B.; Guo,S. Y. Electrochim. Acta 2011, 56, 2627. doi: 10.1016/j.electacta.2010.12.001
-
[3]
(3) Pang, S. C.; Anderson, M. A.; Chapman, T.W. J. Electrochem. Soc. 2000, 147, 444. doi: 10.1149/1.1393216
-
[4]
(4) Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; VanSchalkwijk,W. Nature Materials 2005, 4, 366. doi: 10.1038/nmat1368
-
[5]
(5) Choi, B. G.; Yang, M.; Jung, S. C.; Lee, K. G.; Kim, J. G.; Park,H.; Park, T. J.; Lee, S. B.; Han, Y. K.; Huh, Y. S. ACS Nano2013, 7, 2453. doi: 10.1021/nn305750s
-
[6]
(6) Yang, X. F.;Wang, G. C.;Wang, R. Y.; Li, X.W. Electrochim. Acta 2010, 55, 5414. doi: 10.1016/j.electacta.2010.04.067
-
[7]
(7) Pico, F.; Morales, E.; Fernandez, J. A.; Centeno, T. A.; Ibañez,J.; Rojas, R. M.; Amarilla, J. M.; Rojo, J. M. Electrochim. Acta2009, 54, 2239. doi: 10.1016/j.electacta.2008.10.028
-
[8]
(8) Zhao, D. D.; Bao, S. J.; Zhou,W. J.; Li, H. L. Electrochem. Commun. 2007, 9, 869. doi: 10.1016/j.elecom.2006.11.030
-
[9]
(9) Zhang, L. L.; Xiong, Z. G.; Zhao, X. S. J. Power Sources 2013,222, 326. doi: 10.1016/j.jpowsour.2012.09.016
-
[10]
(10) Yang, G.W.; Xu, C. L.; Li, H. L. Chem. Commun. 2008, 6537.
-
[11]
(11) Yang, D. N.;Wang, R. M.; He, M. S.; Zhang, J.; Liu, Z. F.J. Phys. Chem. B 2005, 109, 7654. doi: 10.1021/jp050083b
-
[12]
(12) Xu, L. P.; Ding, Y. S.; Chen, C. H.; Zhao, L. L.; Rimkus, C.Chem. Mater. 2008, 20, 308. doi: 10.1021/cm702207w
-
[13]
(13) Wang, D. B.; Song, C. X.; Hu, Z. S.; Fu, X. J. Phys. Chem. B2005, 109, 1125. doi: 10.1021/jp046797o
-
[14]
(14) Chen, X.; Chen, X. H.; Zhang, F. Q.; Yang, Z.; Huang, S. M.J. Power Sources 2013, 243, 555. doi: 10.1016/j.jpowsour.2013.04.076
-
[15]
(15) Zhao, D. D.; Xu, M.W.; Zhou,W. J.; Zhang, J.; Li, H. L.Electrochim. Acta 2008, 53, 2699. doi: 10.1016/j.electacta.2007.07.053
-
[16]
(16) Kotte da, I. R. M.; Idris, N. H.; Lu, L.;Wang, J. Z.; Liu, H. K.Electrochim. Acta 2011, 56, 5815. doi: 10.1016/j.electacta.2011.03.143
-
[17]
(17) Li, S. M.;Wang, B.; Liu, J. H.; Yu, M.; An, J.W. Acta Phys. -Chim. Sin. 2012, 28, 2754. [李松梅, 王博, 刘建华,于美, 安军伟. 物理化学学报, 2012, 28, 2754.] doi: 10.3866/PKU.WHXB201208292
-
[18]
(18) Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. J. Am. Chem. Soc. 2010, 132, 7472. doi: 10.1021/ja102267j
-
[19]
(19) Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937. doi: 10.1016/S0008-6223(00)00183-4
-
[20]
(20) Xu, H. B.; Fan, X. Z.; Lu, Y. H.; Zhong, L. A.; Kong, X. F.;Wang, J. Carbon 2010, 48, 3300. doi: 10.1016/j.carbon.2010.04.051
-
[21]
(21) Fan, X. Z.; Lu, Y. H.; Xu, H. B.; Kong, X. F.;Wang, J. J. Mater. Chem. 2011, 21, 18753. doi: 10.1039/c1jm13214h
-
[22]
(22) Sun, Z. P.; Lu, X. M. Ind. Eng. Chem. Res. 2012, 51, 9973. doi: 10.1021/ie202706h
-
[23]
(23) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[24]
(24) Zhao, J.W.; Liu, H. M.; Ni,W. B.; Guo, Y.; Yin, X. Acta Phys. -Chim. Sin. 2009, 25, 1472. [赵健伟, 刘洪梅, 倪文彬,郭彦, 尹星. 物理化学学报, 2009, 25, 1472.] doi: 10.3866/PKU.WHXB20090744
-
[25]
(25) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80,1339. doi: 10.1021/ja01539a017
-
[26]
(26) Ramesha, G. K.; Sampath, S. J. Phys. Chem. C 2009, 113,7985. doi: 10.1021/jp811377n
-
[27]
(27) Guo, H. L.;Wang, X. F.; Qian, Q. Y.;Wang, F. B.; Xia, X. H.ACS Nano 2009, 3, 2653. doi: 10.1021/nn900227d
-
[28]
(28) Gao, F.; Qi, X.W.; Cai, X. L.;Wang, Q. X.; Gao, F.; Sun,W.Thin Solid Films 2012, 520, 5064. doi: 10.1016/j.tsf.2012.03.002
-
[29]
(29) Zhao, C. M.;Wang, X.;Wang, S. M.;Wang, Y. Y.; Zhao, Y. X.;Zheng,W. T. Int. J. Hydrog. Energy 2012, 37, 11846. doi: 10.1016/j.ijhydene.2012.05.138
-
[30]
(30) Wang, D. H.; Choi, D.W.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou,R.; Hu, D. H.;Wang, C. M.; Saraf, L. V.; Zhang, J. G.; Aksay, I.A.; Liu, J. ACS Nano 2009, 3, 907. doi: 10.1021/nn900150y
-
[31]
(31) Corrigan, D. A.; Bendert, R. M. J. Electrochem. Soc. 1989, 136,723. doi: 10.1149/1.2096717
-
[32]
(32) Kim, S. J.; Park, G. J.; Kim, B. C.; Chung, J. K.;Wallace, G. G.;Park, S. Y. Synthetic Metals 2012, 161, 2641.
-
[33]
(33) mez, J.; Kalu, E. E. J. Power Sources 2013, 230, 218. doi: 10.1016/j.jpowsour.2012.12.069
-
[34]
(34) Zhang,W. K.;Wang, L.; Huang, H.; Gan, Y. P.;Wang, C. T.;Tao, X. Y. Electrochim. Acta 2009, 54, 4760. doi: 10.1016/j.electacta.2009.04.008
-
[35]
(35) Buglione, L.; Chng, E. L. K.; Ambrosi, A.; Sofer, Z.; Pumera,M. Electrochem. Commun. 2012, 14, 5. doi: 10.1016/j.elecom.2011.09.013
-
[36]
(36) Li, L.; He, Y. Q.; Chu, X. F.; Li, Y. M.; Sun, F. F.; Huang, H. Z.Acta Phys. -Chim. Sin. 2013, 29, 1681. [李乐, 贺蕴秋, 储晓菲, 李一鸣, 孙芳芳, 黄河洲. 物理化学学报, 2013, 29,1681.] doi: 10.3866/PKU.WHXB201305223
-
[37]
(37) Zhang, J. T.; Jiang, J.W.; Zhao, X. S. J. Phys. Chem. C 2011,115, 6448. doi: 10.1021/jp200724h
-
[38]
(38) Jagadale, A. D.; Kumbhar, V. S.; Dhawale, D. S.; Lokhande, C.D. Electrochim. Acta 2013, 98, 32. doi: 10.1016/j.electacta.2013.02.094
-
[39]
(39) Grden, M.; Alsabet, M.; Jerkiewicz, G. ACS Appl. Mater. Interfaces 2012, 4, 3012. doi: 10.1021/am300380m
-
[40]
(40) Taberna, P. L.; Simon, P.; Fauvarque, J. F. J. Electrochem. Soc.2003, 150, A292.
-
[41]
(41) Chmiola, J.; Yushin, G.; Dash, R.; tsi, Y. J. Power Sources2006, 158, 765. doi: 10.1016/j.jpowsour.2005.09.008
-
[1]
-
-
[1]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[2]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[3]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[4]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[5]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[6]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[7]
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
-
[8]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[9]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[10]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[11]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[12]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[13]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[14]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[15]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[16]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[17]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[18]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[19]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[20]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[1]
Metrics
- PDF Downloads(701)
- Abstract views(753)
- HTML views(1)