Citation: BIAN Pei-Wen, NULI Yan-Na, YANG Jun, WANG Jiu-Lin. Benzenethiolate-Based Solutions for Rechargeable Magnesium Battery Electrolytes[J]. Acta Physico-Chimica Sinica, ;2014, 30(2): 311-317. doi: 10.3866/PKU.WHXB201312201 shu

Benzenethiolate-Based Solutions for Rechargeable Magnesium Battery Electrolytes

  • Received Date: 24 September 2013
    Available Online: 20 December 2013

    Fund Project: 国家自然科学基金(21273147) (21273147)上海市科委(11JC1405700)资助项目 (11JC1405700)

  • The benzenethiolate-based solutions (RSMgCl)n-AlCl3/tetrahydrofuran (THF) (R=4-methylbenzene, 4-isopropylbenzene, 4-methoxybenzene; n=1, 1.5, 2, respectively) were obtained by the simple reaction of benzenethiol compounds with the Grignard reagent C2H5MgCl/THF and AlCl3 in THF, and the electrochemical performance as the rechargeable magnesium battery electrolytes are reported. First, 4-methyl-benzenethiolate magnesium chloride (MBMC)/THF, 4- isopropylbenzenethiolate magnesium chloride (IPBMC)/THF, and 4- methoxybenzenethiolate magnesium chloride (MOBMC)/THF solutions (termed as RSMgCl/THF) were synthesized by the reaction of 4-methylbenzenethiol, 4- isopropylbenzenethiol, and 4- methoxybenzenethiol compounds, respectively, with C2H5MgCl/THF via a hydrogen metal-radical exchange with rapid evolution of ethane gas. Furthermore, (RSMgCl)n-AlCl3/THF solutions were obtained by the reaction of RSMgCl/THF with AlCl3/THF at different molar ratios of RSMgCl:AlCl3. The benzenethiolate-based solutions as electrolytes for rechargeable magnesium batteries were characterized in term of anodic stability and reversibility of magnesium deposition-dissolution using cyclic voltammetry and galvanostatic charge/discharge techniques. Furthermore, the compatibility of the solutions with Mo6S8 cathode material was verified using coin cells with a Mo6S8 cathode, Mg anode, and benzenethiolate-based electrolyte. It is concluded that both the substituents on benzenethiol and the ratio of RSMgCl:AlCl3 have an effect on the electrochemical performance. 0.5 mol·L-1 (IPBMC)1.5-AlCl3/ THF shows the best electrochemical performance with 2.4 V (vs Mg/Mg2+ ) anodic stability, a low voltage for magnesium deposition-dissolution, a high cycling reversibility, and od compatibility with the Mo6S8 cathode. Moreover, the air insensitive character and easy preparation make it a promising candidate for rechargeable battery electrolytes.

  • 加载中
    1. [1]

      (1) Genders, J. D.; Pletcher, D. J. Electroanal. Chem. Interfa. Electrochem. 1986, 199, 93. doi: 10.1016/0022-0728(86)87044-9

    2. [2]

      (2) Liebenow, C. J. J. Appl. Electrochem. 1997, 27, 221. doi: 10.1023/A:1018464210084

    3. [3]

      (3) Lu, Z.; Schechter, A.; Moshkovich, M.; Aurbach, D.J. Electroanal. Chem. 1999, 466, 203. doi: 10.1016/S0022-0728(99)00146-1

    4. [4]

      (4) Aurbach, D.; Moshkovich, M.; Schechter, A.; Turgeman, R.Electrochem. Solid-State Lett. 2000, 3, 31.

    5. [5]

      (5) Gre ry, T. D.; Hoffman, R. J.;Winterton, R. C. J. Electrochem. Soc. 1990, 137, 775. doi: 10.1149/1.2086553

    6. [6]

      (6) Liebenow, C.; Yang, Z.; Lobitz, P. Electrochem. Commun. 2000,2, 641. doi: 10.1016/S1388-2481(00)00094-1

    7. [7]

      (7) Muldoon, J.; Bucur, C. B.; Oliver, A. G.; Sugimoto, T.; Matsui,M.; Kim, H. S.; Allred, G. D.; Zajicek, J.; Kotani, Y. Energy Environ. Sci. 2012, 5, 5941. doi: 10.1039/c2ee03029b

    8. [8]

      (8) Aurbach, D.; Lu, Z.; Schechter, A.; fer, Y.; Gizbar, H.;Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Nature2000, 407, 724. doi: 10.1038/35037553

    9. [9]

      (9) Aurbach, D.; Schechter, A.; Moshkovich, M.; Cohen, Y.J. Electrochem. Soc. 2001, 148, A1004.

    10. [10]

      (10) Aurbach, D.; Gizbar, H.; Schechter, A.; Chusid, O.; ttlieb, H.E.; fer, Y.; ldberg, I. J. Electrochem. Soc. 2002, 149, A115.

    11. [11]

      (11) Gizbar, H.; Vestfrid, Y.; Chusid, O.; fer, Y.; ttlieb, H. E.;Marks, V.; Aurbach, D. Organometallics 2004, 23, 3826. doi: 10.1021/om049949a

    12. [12]

      (12) Vestfried, Y.; Chusid, O.; fer, Y.; Aped, P.; Aurbach, D.Organometallics 2007, 26, 3130. doi: 10.1021/om061076s

    13. [13]

      (13) Viestfried, Y.; Levi, M. D.; fer, Y.; Aurbach, D.J. Electroanal. Chem. 2005, 576, 183. doi: 10.1016/j.jelechem.2004.09.034

    14. [14]

      (14) Chen, Q.; Nuli, Y. N.; Yang, J.; Kailibinuer, K.;Wang, J. L. Acta Phys. -Chim. Sin. 2012, 28, 2625. [陈强, 努丽燕娜,杨军, 凯丽比努尔?克日木, 王久林. 物理化学学报, 2012,28, 2625.] doi: 10.3866/PKU.WHXB201208032

    15. [15]

      (15) Aurbach, D.; Suresh, G. S.; Levi, E.; Mitelman, A.; Mizrahi, O.;Chusid, O.; Brunelli, M. Adv. Mater. 2007, 19, 4260.

    16. [16]

      (16) Mizrahi, O.; Amir, N.; Pollak, E.; Chusid, O.; Marks, V.; ttlieb, H.; Larush, L.; Zinigrad, E.;Aurbach, D. J. Electrochem. Soc. 2008, 155, A103.

    17. [17]

      (17) Pour, N.; fer, Y.; Major, D. T.; Aurbach, D. J. Am. Chem. Soc.2011, 133, 6270. doi: 10.1021/ja1098512

    18. [18]

      (18) Kim, H. S.; Arthur, T. S.; Allred, G. D.; Zajicek, J.; Newman, J.G.; Rodnyansky, A. E.; Oliver, A. G.; Boggess,W. C.; Muldoon,J. Nat. Commun. 2011, 2, 427. doi: 10.1038/ncomms1435

    19. [19]

      (19) Guo, Y. S.; Zhang, F.; Yang, J.;Wang, F. F. Electrochem. Commun. 2012, 18, 24. doi: 10.1016/j.elecom.2012.01.026

    20. [20]

      (20) Guo, Y. S.; Zhang, F.; Yang, J.;Wang, F. F.; Nuli, Y. N.; Hirano,S. I. Energy Environ. Sci. 2012, 5, 9100. doi: 10.1039/c2ee22509c

    21. [21]

      (21) Zhao, Q. S.; Nuli, Y. N.; Guo, Y. S.; Yang, J.;Wang, J. L.Electrochim. Acta 2011, 56, 6530. doi: 10.1016/j.electacta.2011.04.114

    22. [22]

      (22) Wang, F. F.; Guo, Y. S.; Yang, J.; Nuli, Y. N.; Hirano, S. I.Chem. Commun. 2012, 48, 10763. doi: 10.1039/c2cc35857c

    23. [23]

      (23) Bian, P.W.; Nuli, Y. N.; Chen, Q.; Yang, J.;Wang, J. L.Electrochemistry 2014, 20, 1. [卞沛文, 努丽燕娜, 陈强,杨军, 王久林. 电化学, 2014, 20, 1.]

    24. [24]

      (24) Lancry, E.; Levi, E.; Mitelman, A.; Malovany, S.; Aurbach, D.J. Solid State Chem. 2006, 179, 1879. doi: 10.1016/j.jssc.2006.02.032

    25. [25]

      (25) Lancry, E.; Levi, E.; fer, Y.; Levi, M.; Salitra, G.; Aurbach,D. Chem. Mater. 2004, 16, 2832. doi: 10.1021/cm034944+


  • 加载中
    1. [1]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    15. [15]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    16. [16]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    17. [17]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    18. [18]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    19. [19]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    20. [20]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

Metrics
  • PDF Downloads(578)
  • Abstract views(882)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return