Citation: XU Li, PAN Guo-Shun, LIANG Xiao-Lu, LUO Gui-Hai, ZOU Chun-Li, LUO Hai-Mei. Electrocatalytic Activity of Fe-N/C-TsOH Catalyst for the Oxygen Reduction Reaction in Alkaline Media[J]. Acta Physico-Chimica Sinica, ;2014, 30(2): 318-324. doi: 10.3866/PKU.WHXB201312121
-
Pyrolyzed carbon supported ferrum polypyrrole (Fe-N/C) catalysts were synthesized with and without the dopant p-toluenesulfonic acid (TsOH) through a solvent-grinding method followed by heattreatment at the desire temperature. Both the catalysts were characterized using electrochemical techniques, such as cyclic voltammetry (CV), as well as the rotating disk electrode (RDE) technique. It was found that the catalysts doped with TsOH showed significantly better oxygen reduction reaction (ORR) activity than the undoped catalysts. The average electron transfer numbers for the catalyzed ORR were 3.899 and 3.098 for the TsOH-doped and undoped catalysts, respectively. Thermal treatment was found to be a necessary step for catalyst activity improvement. The catalyst pyrolyzed at 600 ℃ showed the best ORR activity: the onset potential and the potential at the current density of -1.5 mA·cm-2 for the TsOHdoped catalyst were 30 and 170 mV more positive than those for the un-pyrolyzed TsOH-doped catalyst, respectively. To clarify the effects of TsOH doping and pyrolyzation, scanning electron microscopy (SEM), X- ray diffraction (XRD), and X- ray photoelectron spectroscopy (XPS) were used to analyze the morphology, structure, and composition of the catalysts. The XPS results suggest that the pyrrolic-N groups are the most active sites and sulfur species are structurally bound to carbon in the form of C―Sn―C and oxidized ―SOn― bonds, which is an additional beneficial factor for the ORR.
-
-
[1]
(1) Qiao, J. L.; Xu, L.; Ding, L.; Shi, P. H.; Zhang, L.; Baker, R.;Zhang, J. J. Int. J. Electrochem. Sci. 2013, 8, 1189.
-
[2]
(2) Kromera, M. A.; Joseck, F.; Rhodes, T.; Guernsey, M.;Marcinkoski, J. Int. J. Hydrog. Energy 2009, 34, 8276. doi: 10.1016/j.ijhydene.2009.06.052
-
[3]
(3) Bashyam, R.; Zelenary, P. Nature 2006, 443, 63. doi: 10.1038/nature05118
-
[4]
(4) Lee, K.; Zhang, L.; Lui, H.; Hui, R.; Shi, Z.; Zhang, J.Electrochim. Acta 2009, 54, 4704. doi: 10.1016/j.electacta.2009.03.081
-
[5]
(5) Baker, R.;Wilkinson, D. P.;Wilkinson, J. Electrochim. Acta2008, 53, 6906. doi: 10.1016/j.electacta.2008.01.055
-
[6]
(6) Xu, Z.; Li, H.; Cao, G.; Zhang, Q.; Li, K.; Zhao, Z. J. Mol. Catal. A: Chem. 2011, 335, 89. doi: 10.1016/j.molcata.2010.11.018
-
[7]
(7) Ding, L.; Qiao, J. L.; Feng, X.; Zhang, J.; Tian, B. Int. J. Hydrog. Energy 2012, 37, 14103. doi: 10.1016/j.ijhydene.2012.07.046
-
[8]
(8) Li, X.; Liu, G.; Popov, B. N. J. Power Sources 2010, 195,6373. doi: 10.1016/j.jpowsour.2010.04.019
-
[9]
(9) Qiao, J.; Xu, L.; Xu, P.; Shi, J.;Wang, H. Electrochim. Acta2013, 96, 298. doi: 10.1016/j.electacta.2013.02.030
-
[10]
(10) Jaouen, F.; ellne, V.; Lefèvre, M.; Herranz, J. Proietti, E.;Dodelet, J. P. Electrochim. Acta 2013, 87, 619. doi: 10.1016/j.electacta.2012.09.057
-
[11]
(11) Charreteur, F.; Ruggeri, S.; Jaouen, F.; Dodelet, J. P. Electrochim. Acta 2008, 53, 6881. doi: 10.1016/j.electacta.2007.12.051
-
[12]
(12) Yuasa, M.; Yamaguchi, A.; Itsuki, H.; Tanaka, K.; Yamamoto,M.; Oyaizu, K. Chem. Mater. 2005, 17, 4278. doi: 10.1021/cm050958z
-
[13]
(13) Hinds, G. Preparation and Characterisation of PEM Fuel CellElectrocatalysts: a Review. In NPL Report DEPC-MPE 019;National Physical Laboratory: Teddington, Middlesex, UnitedKingdom, 2005; p 10.
-
[14]
(14) Qiao, J.; Xu, L.; Ding, L.; Zhang, L.; Baker, L.; Dai, X.; Zhang,J. Appl. Catal. B: Environ. 2012, 125, 197. doi: 10.1016/j.apcatb.2012.05.050
-
[15]
(15) Yang, Y.; Jiang, S.; Zhao, Y.; Zhu, L.; Chen, S.;Wang, X.;Wu,Q.; Ma, J.; Ma, Y.; Hu, Z. Angew. Chem. Int. Edit. 2011, 50,7132. doi: 10.1002/anie.v50.31
-
[16]
(16) Kramm, U. I.; Herrmann, I.; Fiechter, S.; Zehl, G.; Zizak, I.;Abs-Wurmbach, I.; Radnik, J.; Dorbandt, I.; Bogdanoff, P. ECS Trans. 2009, 25, 659.
-
[17]
(17) Cheng, H.; Yan,W.; Scott, K. Fuel Cells 2007, 7, 16.
-
[18]
(18) Paulus, A. U.; Schmidt, H. A.; Gasteiger, R. J.; Behm, R. J.Electroanal. Chem. 2001, 495, 134. doi: 10.1016/S0022-0728(00)00407-1
-
[19]
(19) Bezerra, C.W. B.; Zhang, L.; Lee, K.; Liu, H.; Zhang, J.; Shi,Z.; Marques, A. L. B.; Marques, E. P.;Wu, S.; Zhang, J.Electrochim. Acta 2008, 53, 7703. doi: 10.1016/j.electacta.2008.05.030
-
[20]
(20) Jaouen, F.; Dodelet. J. P. Electrochim. Acta 2007, 52, 5975. doi: 10.1016/j.electacta.2007.03.045
-
[21]
(21) Subramanian, N. P.; Li, X.; Nallathambi, V.; Kumaraguru, S. P.;Colon-Mercado, H.;Wu, G.; Lee, J.W.; Popov, B. N. J. Power Sources 2009, 188, 38. doi: 10.1016/j.jpowsour.2008.11.087
-
[22]
(22) Wang, H.; Maiyalagan, T.;Wang, X. ACS Catal. 2012, 2, 781.doi: 10.1021/cs200652y
-
[23]
(23) Wu, G.; Chen, Z.; Artyushkova, K.; Garzon, F. H.; Zelenay, P.ECS Trans. 2008, 16, 159.
-
[24]
(24) Kundu, S.; Nagaiah, T. C.; Xia,W.;Wang, Y.; Dommele, S. V.;Bitter, J. H.; Santa, M.; Grundmeier, G.; Bron, M.; Schuhmann,W.; Muhler, M. J. Phys. Chem. C 2009, 113, 14302. doi: 10.1021/jp811320d
-
[25]
(25) Wu, G.; Artyushkova, K.; Ferrandon, M.; Kropf, J.; Myers, D.;Zelenay, P. ECS Trans. 2009, 25, 1299.
-
[26]
(26) Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S.; Fahlman, M.;Berggren, M.; Crispin, X. Nat. Mater. 2011, 10, 429. doi: 10.1038/nmat3012
-
[27]
(27) Paraknowitsch, J. P.;Wienert, B.; Zhang, Y.; Thomas, A. Chem. Eur. J. 2012, 18, 15416. doi: 10.1002/chem.v18.48
-
[28]
(28) Wang, H.; Bo, X.; Zhang, Y.; Guo, L. Electrochim. Acta 2013,108, 404. doi: 10.1016/j.electacta.2013.06.133
-
[29]
(29) Herrmann, I.; Kramm, U. I.; Radnik, J.; Fiechter, S.; Bogdanoff,P. J. Electrochem. Soc. 2009, 156, 1283. doi: 10.1149/1.3185852
-
[30]
(30) Grabke, H. J.; Moszynski, D.; Muller-Lorenz, E. M.; Schneider,A. Surf. Interface Anal. 2002, 34, 369.
-
[1]
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[3]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[4]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[5]
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
-
[6]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[7]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[8]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[9]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[10]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[11]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[12]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[13]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[14]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[15]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[16]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[17]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[18]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[19]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[20]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[1]
Metrics
- PDF Downloads(610)
- Abstract views(774)
- HTML views(16)