Citation:
XU Li, PAN Guo-Shun, LIANG Xiao-Lu, LUO Gui-Hai, ZOU Chun-Li, LUO Hai-Mei. Electrocatalytic Activity of Fe-N/C-TsOH Catalyst for the Oxygen Reduction Reaction in Alkaline Media[J]. Acta Physico-Chimica Sinica,
;2014, 30(2): 318-324.
doi:
10.3866/PKU.WHXB201312121
-
Pyrolyzed carbon supported ferrum polypyrrole (Fe-N/C) catalysts were synthesized with and without the dopant p-toluenesulfonic acid (TsOH) through a solvent-grinding method followed by heattreatment at the desire temperature. Both the catalysts were characterized using electrochemical techniques, such as cyclic voltammetry (CV), as well as the rotating disk electrode (RDE) technique. It was found that the catalysts doped with TsOH showed significantly better oxygen reduction reaction (ORR) activity than the undoped catalysts. The average electron transfer numbers for the catalyzed ORR were 3.899 and 3.098 for the TsOH-doped and undoped catalysts, respectively. Thermal treatment was found to be a necessary step for catalyst activity improvement. The catalyst pyrolyzed at 600 ℃ showed the best ORR activity: the onset potential and the potential at the current density of -1.5 mA·cm-2 for the TsOHdoped catalyst were 30 and 170 mV more positive than those for the un-pyrolyzed TsOH-doped catalyst, respectively. To clarify the effects of TsOH doping and pyrolyzation, scanning electron microscopy (SEM), X- ray diffraction (XRD), and X- ray photoelectron spectroscopy (XPS) were used to analyze the morphology, structure, and composition of the catalysts. The XPS results suggest that the pyrrolic-N groups are the most active sites and sulfur species are structurally bound to carbon in the form of C―Sn―C and oxidized ―SOn― bonds, which is an additional beneficial factor for the ORR.
-
-
-
[1]
(1) Qiao, J. L.; Xu, L.; Ding, L.; Shi, P. H.; Zhang, L.; Baker, R.;Zhang, J. J. Int. J. Electrochem. Sci. 2013, 8, 1189.
-
[2]
(2) Kromera, M. A.; Joseck, F.; Rhodes, T.; Guernsey, M.;Marcinkoski, J. Int. J. Hydrog. Energy 2009, 34, 8276. doi: 10.1016/j.ijhydene.2009.06.052
-
[3]
(3) Bashyam, R.; Zelenary, P. Nature 2006, 443, 63. doi: 10.1038/nature05118
-
[4]
(4) Lee, K.; Zhang, L.; Lui, H.; Hui, R.; Shi, Z.; Zhang, J.Electrochim. Acta 2009, 54, 4704. doi: 10.1016/j.electacta.2009.03.081
-
[5]
(5) Baker, R.;Wilkinson, D. P.;Wilkinson, J. Electrochim. Acta2008, 53, 6906. doi: 10.1016/j.electacta.2008.01.055
-
[6]
(6) Xu, Z.; Li, H.; Cao, G.; Zhang, Q.; Li, K.; Zhao, Z. J. Mol. Catal. A: Chem. 2011, 335, 89. doi: 10.1016/j.molcata.2010.11.018
-
[7]
(7) Ding, L.; Qiao, J. L.; Feng, X.; Zhang, J.; Tian, B. Int. J. Hydrog. Energy 2012, 37, 14103. doi: 10.1016/j.ijhydene.2012.07.046
-
[8]
(8) Li, X.; Liu, G.; Popov, B. N. J. Power Sources 2010, 195,6373. doi: 10.1016/j.jpowsour.2010.04.019
-
[9]
(9) Qiao, J.; Xu, L.; Xu, P.; Shi, J.;Wang, H. Electrochim. Acta2013, 96, 298. doi: 10.1016/j.electacta.2013.02.030
-
[10]
(10) Jaouen, F.; ellne, V.; Lefèvre, M.; Herranz, J. Proietti, E.;Dodelet, J. P. Electrochim. Acta 2013, 87, 619. doi: 10.1016/j.electacta.2012.09.057
-
[11]
(11) Charreteur, F.; Ruggeri, S.; Jaouen, F.; Dodelet, J. P. Electrochim. Acta 2008, 53, 6881. doi: 10.1016/j.electacta.2007.12.051
-
[12]
(12) Yuasa, M.; Yamaguchi, A.; Itsuki, H.; Tanaka, K.; Yamamoto,M.; Oyaizu, K. Chem. Mater. 2005, 17, 4278. doi: 10.1021/cm050958z
-
[13]
(13) Hinds, G. Preparation and Characterisation of PEM Fuel CellElectrocatalysts: a Review. In NPL Report DEPC-MPE 019;National Physical Laboratory: Teddington, Middlesex, UnitedKingdom, 2005; p 10.
-
[14]
(14) Qiao, J.; Xu, L.; Ding, L.; Zhang, L.; Baker, L.; Dai, X.; Zhang,J. Appl. Catal. B: Environ. 2012, 125, 197. doi: 10.1016/j.apcatb.2012.05.050
-
[15]
(15) Yang, Y.; Jiang, S.; Zhao, Y.; Zhu, L.; Chen, S.;Wang, X.;Wu,Q.; Ma, J.; Ma, Y.; Hu, Z. Angew. Chem. Int. Edit. 2011, 50,7132. doi: 10.1002/anie.v50.31
-
[16]
(16) Kramm, U. I.; Herrmann, I.; Fiechter, S.; Zehl, G.; Zizak, I.;Abs-Wurmbach, I.; Radnik, J.; Dorbandt, I.; Bogdanoff, P. ECS Trans. 2009, 25, 659.
-
[17]
(17) Cheng, H.; Yan,W.; Scott, K. Fuel Cells 2007, 7, 16.
-
[18]
(18) Paulus, A. U.; Schmidt, H. A.; Gasteiger, R. J.; Behm, R. J.Electroanal. Chem. 2001, 495, 134. doi: 10.1016/S0022-0728(00)00407-1
-
[19]
(19) Bezerra, C.W. B.; Zhang, L.; Lee, K.; Liu, H.; Zhang, J.; Shi,Z.; Marques, A. L. B.; Marques, E. P.;Wu, S.; Zhang, J.Electrochim. Acta 2008, 53, 7703. doi: 10.1016/j.electacta.2008.05.030
-
[20]
(20) Jaouen, F.; Dodelet. J. P. Electrochim. Acta 2007, 52, 5975. doi: 10.1016/j.electacta.2007.03.045
-
[21]
(21) Subramanian, N. P.; Li, X.; Nallathambi, V.; Kumaraguru, S. P.;Colon-Mercado, H.;Wu, G.; Lee, J.W.; Popov, B. N. J. Power Sources 2009, 188, 38. doi: 10.1016/j.jpowsour.2008.11.087
-
[22]
(22) Wang, H.; Maiyalagan, T.;Wang, X. ACS Catal. 2012, 2, 781.doi: 10.1021/cs200652y
-
[23]
(23) Wu, G.; Chen, Z.; Artyushkova, K.; Garzon, F. H.; Zelenay, P.ECS Trans. 2008, 16, 159.
-
[24]
(24) Kundu, S.; Nagaiah, T. C.; Xia,W.;Wang, Y.; Dommele, S. V.;Bitter, J. H.; Santa, M.; Grundmeier, G.; Bron, M.; Schuhmann,W.; Muhler, M. J. Phys. Chem. C 2009, 113, 14302. doi: 10.1021/jp811320d
-
[25]
(25) Wu, G.; Artyushkova, K.; Ferrandon, M.; Kropf, J.; Myers, D.;Zelenay, P. ECS Trans. 2009, 25, 1299.
-
[26]
(26) Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S.; Fahlman, M.;Berggren, M.; Crispin, X. Nat. Mater. 2011, 10, 429. doi: 10.1038/nmat3012
-
[27]
(27) Paraknowitsch, J. P.;Wienert, B.; Zhang, Y.; Thomas, A. Chem. Eur. J. 2012, 18, 15416. doi: 10.1002/chem.v18.48
-
[28]
(28) Wang, H.; Bo, X.; Zhang, Y.; Guo, L. Electrochim. Acta 2013,108, 404. doi: 10.1016/j.electacta.2013.06.133
-
[29]
(29) Herrmann, I.; Kramm, U. I.; Radnik, J.; Fiechter, S.; Bogdanoff,P. J. Electrochem. Soc. 2009, 156, 1283. doi: 10.1149/1.3185852
-
[30]
(30) Grabke, H. J.; Moszynski, D.; Muller-Lorenz, E. M.; Schneider,A. Surf. Interface Anal. 2002, 34, 369.
-
[1]
-
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[3]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[4]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[5]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[6]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[7]
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
-
[8]
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
-
[9]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[10]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[11]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[12]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[13]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[14]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[15]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[16]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[17]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[18]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[19]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[20]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[1]
Metrics
- PDF Downloads(610)
- Abstract views(830)
- HTML views(19)