Citation: XU Li, PAN Guo-Shun, LIANG Xiao-Lu, LUO Gui-Hai, ZOU Chun-Li, LUO Hai-Mei. Electrocatalytic Activity of Fe-N/C-TsOH Catalyst for the Oxygen Reduction Reaction in Alkaline Media[J]. Acta Physico-Chimica Sinica, ;2014, 30(2): 318-324. doi: 10.3866/PKU.WHXB201312121 shu

Electrocatalytic Activity of Fe-N/C-TsOH Catalyst for the Oxygen Reduction Reaction in Alkaline Media

  • Received Date: 14 October 2013
    Available Online: 12 December 2013

    Fund Project: 国家自然科学基金(91223202),国家国际科技合作专项项目(2011DFA73410),清华大学自主科研计划(20101081907) (91223202),国家国际科技合作专项项目(2011DFA73410),清华大学自主科研计划(20101081907)国家重点基础研究发展规划项目(973) (2011CB013102)资助 (973) (2011CB013102)

  • Pyrolyzed carbon supported ferrum polypyrrole (Fe-N/C) catalysts were synthesized with and without the dopant p-toluenesulfonic acid (TsOH) through a solvent-grinding method followed by heattreatment at the desire temperature. Both the catalysts were characterized using electrochemical techniques, such as cyclic voltammetry (CV), as well as the rotating disk electrode (RDE) technique. It was found that the catalysts doped with TsOH showed significantly better oxygen reduction reaction (ORR) activity than the undoped catalysts. The average electron transfer numbers for the catalyzed ORR were 3.899 and 3.098 for the TsOH-doped and undoped catalysts, respectively. Thermal treatment was found to be a necessary step for catalyst activity improvement. The catalyst pyrolyzed at 600 ℃ showed the best ORR activity: the onset potential and the potential at the current density of -1.5 mA·cm-2 for the TsOHdoped catalyst were 30 and 170 mV more positive than those for the un-pyrolyzed TsOH-doped catalyst, respectively. To clarify the effects of TsOH doping and pyrolyzation, scanning electron microscopy (SEM), X- ray diffraction (XRD), and X- ray photoelectron spectroscopy (XPS) were used to analyze the morphology, structure, and composition of the catalysts. The XPS results suggest that the pyrrolic-N groups are the most active sites and sulfur species are structurally bound to carbon in the form of C―Sn―C and oxidized ―SOn― bonds, which is an additional beneficial factor for the ORR.

  • 加载中
    1. [1]

      (1) Qiao, J. L.; Xu, L.; Ding, L.; Shi, P. H.; Zhang, L.; Baker, R.;Zhang, J. J. Int. J. Electrochem. Sci. 2013, 8, 1189.

    2. [2]

      (2) Kromera, M. A.; Joseck, F.; Rhodes, T.; Guernsey, M.;Marcinkoski, J. Int. J. Hydrog. Energy 2009, 34, 8276. doi: 10.1016/j.ijhydene.2009.06.052

    3. [3]

      (3) Bashyam, R.; Zelenary, P. Nature 2006, 443, 63. doi: 10.1038/nature05118

    4. [4]

      (4) Lee, K.; Zhang, L.; Lui, H.; Hui, R.; Shi, Z.; Zhang, J.Electrochim. Acta 2009, 54, 4704. doi: 10.1016/j.electacta.2009.03.081

    5. [5]

      (5) Baker, R.;Wilkinson, D. P.;Wilkinson, J. Electrochim. Acta2008, 53, 6906. doi: 10.1016/j.electacta.2008.01.055

    6. [6]

      (6) Xu, Z.; Li, H.; Cao, G.; Zhang, Q.; Li, K.; Zhao, Z. J. Mol. Catal. A: Chem. 2011, 335, 89. doi: 10.1016/j.molcata.2010.11.018

    7. [7]

      (7) Ding, L.; Qiao, J. L.; Feng, X.; Zhang, J.; Tian, B. Int. J. Hydrog. Energy 2012, 37, 14103. doi: 10.1016/j.ijhydene.2012.07.046

    8. [8]

      (8) Li, X.; Liu, G.; Popov, B. N. J. Power Sources 2010, 195,6373. doi: 10.1016/j.jpowsour.2010.04.019

    9. [9]

      (9) Qiao, J.; Xu, L.; Xu, P.; Shi, J.;Wang, H. Electrochim. Acta2013, 96, 298. doi: 10.1016/j.electacta.2013.02.030

    10. [10]

      (10) Jaouen, F.; ellne, V.; Lefèvre, M.; Herranz, J. Proietti, E.;Dodelet, J. P. Electrochim. Acta 2013, 87, 619. doi: 10.1016/j.electacta.2012.09.057

    11. [11]

      (11) Charreteur, F.; Ruggeri, S.; Jaouen, F.; Dodelet, J. P. Electrochim. Acta 2008, 53, 6881. doi: 10.1016/j.electacta.2007.12.051

    12. [12]

      (12) Yuasa, M.; Yamaguchi, A.; Itsuki, H.; Tanaka, K.; Yamamoto,M.; Oyaizu, K. Chem. Mater. 2005, 17, 4278. doi: 10.1021/cm050958z

    13. [13]

      (13) Hinds, G. Preparation and Characterisation of PEM Fuel CellElectrocatalysts: a Review. In NPL Report DEPC-MPE 019;National Physical Laboratory: Teddington, Middlesex, UnitedKingdom, 2005; p 10.

    14. [14]

      (14) Qiao, J.; Xu, L.; Ding, L.; Zhang, L.; Baker, L.; Dai, X.; Zhang,J. Appl. Catal. B: Environ. 2012, 125, 197. doi: 10.1016/j.apcatb.2012.05.050

    15. [15]

      (15) Yang, Y.; Jiang, S.; Zhao, Y.; Zhu, L.; Chen, S.;Wang, X.;Wu,Q.; Ma, J.; Ma, Y.; Hu, Z. Angew. Chem. Int. Edit. 2011, 50,7132. doi: 10.1002/anie.v50.31

    16. [16]

      (16) Kramm, U. I.; Herrmann, I.; Fiechter, S.; Zehl, G.; Zizak, I.;Abs-Wurmbach, I.; Radnik, J.; Dorbandt, I.; Bogdanoff, P. ECS Trans. 2009, 25, 659.

    17. [17]

      (17) Cheng, H.; Yan,W.; Scott, K. Fuel Cells 2007, 7, 16.

    18. [18]

      (18) Paulus, A. U.; Schmidt, H. A.; Gasteiger, R. J.; Behm, R. J.Electroanal. Chem. 2001, 495, 134. doi: 10.1016/S0022-0728(00)00407-1

    19. [19]

      (19) Bezerra, C.W. B.; Zhang, L.; Lee, K.; Liu, H.; Zhang, J.; Shi,Z.; Marques, A. L. B.; Marques, E. P.;Wu, S.; Zhang, J.Electrochim. Acta 2008, 53, 7703. doi: 10.1016/j.electacta.2008.05.030

    20. [20]

      (20) Jaouen, F.; Dodelet. J. P. Electrochim. Acta 2007, 52, 5975. doi: 10.1016/j.electacta.2007.03.045

    21. [21]

      (21) Subramanian, N. P.; Li, X.; Nallathambi, V.; Kumaraguru, S. P.;Colon-Mercado, H.;Wu, G.; Lee, J.W.; Popov, B. N. J. Power Sources 2009, 188, 38. doi: 10.1016/j.jpowsour.2008.11.087

    22. [22]

      (22) Wang, H.; Maiyalagan, T.;Wang, X. ACS Catal. 2012, 2, 781.doi: 10.1021/cs200652y

    23. [23]

      (23) Wu, G.; Chen, Z.; Artyushkova, K.; Garzon, F. H.; Zelenay, P.ECS Trans. 2008, 16, 159.

    24. [24]

      (24) Kundu, S.; Nagaiah, T. C.; Xia,W.;Wang, Y.; Dommele, S. V.;Bitter, J. H.; Santa, M.; Grundmeier, G.; Bron, M.; Schuhmann,W.; Muhler, M. J. Phys. Chem. C 2009, 113, 14302. doi: 10.1021/jp811320d

    25. [25]

      (25) Wu, G.; Artyushkova, K.; Ferrandon, M.; Kropf, J.; Myers, D.;Zelenay, P. ECS Trans. 2009, 25, 1299.

    26. [26]

      (26) Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S.; Fahlman, M.;Berggren, M.; Crispin, X. Nat. Mater. 2011, 10, 429. doi: 10.1038/nmat3012

    27. [27]

      (27) Paraknowitsch, J. P.;Wienert, B.; Zhang, Y.; Thomas, A. Chem. Eur. J. 2012, 18, 15416. doi: 10.1002/chem.v18.48

    28. [28]

      (28) Wang, H.; Bo, X.; Zhang, Y.; Guo, L. Electrochim. Acta 2013,108, 404. doi: 10.1016/j.electacta.2013.06.133

    29. [29]

      (29) Herrmann, I.; Kramm, U. I.; Radnik, J.; Fiechter, S.; Bogdanoff,P. J. Electrochem. Soc. 2009, 156, 1283. doi: 10.1149/1.3185852

    30. [30]

      (30) Grabke, H. J.; Moszynski, D.; Muller-Lorenz, E. M.; Schneider,A. Surf. Interface Anal. 2002, 34, 369.


  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    5. [5]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    8. [8]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    9. [9]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    14. [14]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    17. [17]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(610)
  • Abstract views(830)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return