Citation: PEI Yi-Qiang, ZHENG Zhao-Lei, ZHANG Bo. Chemical Kinetic Model Development of Biodiesel Surrogate Fuel and Reaction Path Analysis[J]. Acta Physico-Chimica Sinica, ;2014, 30(2): 217-226. doi: 10.3866/PKU.WHXB201312102
-
In the present study, methyl decanoate (C11H22O2) and n-heptane (nC7H16) were selected as a surrogate of biodiesel fuel. The molar ratio of the two constituents was determined to be 1:1, based on a comparison of the relative molecular weights, low heat values, and oxygen contents of the surrogate fuel and real biodiesel fuel. Furthermore, a chemical kinetic model including 691 species and 3226 elementary reactions of this biodiesel surrogate fuel was developed. The ignition delay times from experiments and calculations, under shock tube conditions, were compared; the computational results agree well with the experimental results. Comparisons of the in-cylinder pressure and main emissions under the engine conditions showed that the in-cylinder pressure calculated using this model agrees very well with the experimental result, and the trends in variations in the amounts of CO, unburned hydrocarbons, and NOx emissions calculated using this model are also close to the experimental results. In addition, the lowtemperature reaction kinetics was analyzed in this study. The results show that the main products of methyl decanoate H- abstraction are MD2J and MDMJ. Besides the oxygen addition reaction, the main consumption paths of MD2J include reaction with C7H15O2-3 (the product of the first oxygen addition of C7H15-1), decomposition to MP2D, and H-abstraction by O2 forming MD2D. The main consumption paths of MDMJ are conversion to its isomers, MD2J and MD3J.
-
Keywords:
-
Biodiesel
, - Surrogate fuel,
- Kinetics,
- Ignition delay,
- Lowtemperature reaction
-
-
-
[1]
(1) Yao, G. X.; Wang, J. M. Sino-Global Energy 2010, 15 (9), 23.[姚国欣,王建明.中外能源, 2010, 15 (9), 23.]
-
[2]
(2) Zhang, S. W. Chemical Industry 2007, 25 (9), 5. [张泗文. 化学工业, 2007, 25 (9), 5.]
-
[3]
(3) Szybist, J. P.; Song, J. H.; Alam, M. Fuel Process. Technol.2007, 88 (7), 679. doi: 10.1016/j.fuproc.2006.12.008
-
[4]
(4) Lee, C. S.; Park, S. W.; Kwon, S. L. Energy Fuels 2005, 19 (5),2201. doi: 10.1021/ef050026h
-
[5]
(5) Gaurav, K.; Srivastava, R.; Singh, R. Int. J. Green Energy 2013,10 (8), 775. doi: 10.1080/15435075.2012.726673
-
[6]
(6) Lü, X. C.; Ma, J. J.; Ji, L. B.; Huang, Z. Combust. Sci. Technol.2009, 15 (3), 203. [吕兴才,马骏骏, 吉丽斌,黄震.燃烧科学与技术, 2009, 15 (3), 203.]
-
[7]
(7) Komninos, N. P.; Rakopoulos, C. D. Renew. Sust. Energ. Rev.2012, 16 (3), 1588. doi: 10.1016/j.rser.2011.11.026
-
[8]
(8) Mancaruso, E.; Vaglieco, B. M. Exp. Therm. Fluid Sci. 2010, 34 (3), 346. doi: 10.1016/j.expthermflusci.2009.10.010
-
[9]
(9) Zhang, Q. F.; Zheng, Z. L.; He, Z. W.; Wang, Y. Acta Phys. -Chim. Sin. 2011, 27 (3), 530. [张庆峰, 郑朝蕾, 何祖威,王迎.物理化学学报, 2011, 27 (3), 530.] doi: 10.3866/PKU.WHXB20110334
-
[10]
(10) Szybist, J. P.; McFarlane, J.; Bunting, B. G. SAE Tech. Pap. Ser.2007, 2007-01-4010.
-
[11]
(11) Valeri, I. G.; Yang, J. F. Biotechnol. Adv. 2009, 27 (5), 641. doi: 10.1016/j.biotechadv.2009.04.024
-
[12]
(12) Fisher, E. M.; Pitz, W. J.; Curran, H. J.; Westbrook, C. K. Proc. Combust. Inst. 2000, 2 (28), 1579.
-
[13]
(13) Herbinet, O.; William, J. P.; Charles, K. W. Combust. Flame2008, 154 (3), 507. doi: 10.1016/j.combustflame.2008.03.003
-
[14]
(14) Diévart, P.; Won, S. H.; Dooley, S.; Dryer, F. L.; Ju, Y. G.Combust. Flame 2012, 159, 1793. doi: 10.1016/j.combustflame.2012.01.002
-
[15]
(15) Hakka, M. H.; Glaude, P. A.; Herbinet, O.; Battin-Leclerc, F.Combust. Flame 2009, 156, 2129. doi: 10.1016/j.combustflame.2009.06.003
-
[16]
(16) Brakora, J. L.; Ra, Y.; Reitz, R. D.; McFarlane, J.; Daw, C. S.SAE Tech. Pap. Ser. 2008, 2008-01-1378.
-
[17]
(17) Herbinet, O.; Pitz, W. J.; Westbrook, C. K. Combust. Flame2010, 157, 893. doi: 10.1016/j.combustflame.2009.10.013
-
[18]
(18) Sarathy, S. M.; Thomson, M. J.; Pitz, W. J.; Lu, T. Proc. Combust. Inst. 2011, 33, 399. doi: 10.1016/j.proci.2010.06.058
-
[19]
(19) Patel, A.; Kong, S. C.; Reitz, R. D. SAE Tech. Pap. Ser. 2004,2004-01-0558.
-
[20]
(20) Hori, M.; Matsunaga, N.; Marinov, N. M.; Pitz, W.; Westbrook,C. Proc. Combust. Inst. 1998, 27, 389.
-
[21]
(21) Kee, R. J.; Rupley, F. M.; Miller, J. A.; Coltrin, M. E.; Grcar, J.F.; Meeks, E.; Moffat, H. K.; Lutz, A. E.; Dixon-Lewis, G.;Smooke, M. D.; Warnatz, J.; Evans, G. H.; Larson, R. S.;Mitchell, R. E.; Petzold, L. R.; Reynolds, W. C.; Caracotsios,M.; Stewart, W. E.; Glarborg, P.; Wang, C.; McLellan, C. L.;Adigun, O.; Houf, W. G.; Chou, C. P.; Miller, S. F.; Ho, P.;Young, P. D.; Young, D. J.; Hodgson, D. W.; Petrova, M. V.;Puduppakkam, K. V. CHEMKIN Release 4.1; Reaction Design:San Die , CA. 2006
-
[22]
(22) Hernandez, J. J.; Serrano, C.; Perez, J. Energ Fuel 2006, 20,532. doi: 10.1021/ef058025c
-
[23]
(23) Nicolas, G. J. The Rate-controlled Constrained-EquilibriumModeling of C1-C2/O2/diluent Mixtures. Ph. D. Dissertation,Northeastern University, Boston, 2012.
-
[24]
(24) Hernandez, J. J.; Sanz-Argent, J.; Carot, J. M.; Jabaloyes, J. M.Int. J. Engine Res. 2010, 11, 199. doi: 10.1243/14680874JER06209
-
[25]
(25) Andrae, J. C. G.; Brinck, T.; Kalghatgi, G. T. Combust. Flame2008, 155, 696. doi: 10.1016/j.combustflame.2008.05.010
-
[26]
(26) Andrae, J. C. G. Fuel 2013, 107, 740. doi: 10.1016/j.fuel.2013.01.070
-
[27]
(27) Gustavsson, J.; lovitchev, V. I. SAE Tech. Pap. Ser. 2003,2003-01-1848.
-
[28]
(28) Ciezki, H. K.; Adomeit, G. Combust. Flame 1993, 93 (4), 421.doi: 10.1016/0010-2180(93)90142-P
-
[29]
(29) Wang, W. J.; Oehlschlaeger, M. A. Combust. Flame 2012, 159,476. doi: 10.1016/j.combustflame.2011.07.019
-
[30]
(30) Cheng, X. B.; Chen, D. L.; Ju, H. L. Automobile Technology2008, No. 1, 46. [成晓北,陈德良, 鞠洪玲.汽车技术, 2008,No. 1, 46.]
-
[31]
(31) Zheng, Z. L.; Yao, M. F. Fuel 2006, 85 (17-18), 2605. doi: 10.1016/j.fuel.2006.05.005
-
[1]
-
-
[1]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[2]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[3]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[4]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[5]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[6]
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
-
[7]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[8]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[9]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[10]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[11]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[12]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[13]
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
-
[14]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[15]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[16]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[17]
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043
-
[18]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[19]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[20]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[1]
Metrics
- PDF Downloads(644)
- Abstract views(873)
- HTML views(5)