Citation: LIU Hai, DONG Xiao, HE Yuan-Hang. Reactive Molecular Dynamics Simulations of Carbon-Containing Clusters Formation during Pyrolysis of TNT[J]. Acta Physico-Chimica Sinica, ;2014, 30(2): 232-240. doi: 10.3866/PKU.WHXB201312101
-
ReaxFF molecular dynamics simulations of trinitrotoluene (TNT) pyrolysis show that use of the ReaxFF/lg potential function, which adds the London dispersion term, gives superior results in equilibrium density calculation of energetic materials. According to our calculations using limited time steps, the main products are NO2, NO, H2O, N2, CO2, CO, OH, and HONO, and H2O, N2, and CO2 are the final products. We also used ReaxFF potential functions to simulate the same process to conduct a comparative analysis. The main and final products are consistent with those obtained using ReaxFF/lg, but the kinetics are different. Both ortho-NO2 homolytic cleavage and C―NO2→C―ONO rearrangement homolysis are thermodynamically favorable pathways in the early thermal decomposition of TNT. However, C―NO2→C―ONO rearrangement homolysis is less favorable kinetically than C―NO2 homolysis, since C―NO2 is the weakest bond in TNT. Soon after their formation, NO2 and NO participate in secondary reactions and eventually form N2. Pyrolysis to form OH and other small molecules promotes the formation of H2O. Aromatic ring fission does not take place until most of the attached groups have interacted or are removed, and increasing the temperature accelerates main-ring fission and further decomposition to form CO2; this is the major reason for CO2 distribution fluctuations under high-temperature conditions. When the TNT molecules in the unit cell are almost completely decomposed, the potential energy of the system is significantly attenuated. The maximum amount of carbon-containing clusters formed in the thermal decomposition is more dependent on density than on temperature. Moreover, the simulation results show that coagulation of carbonaceous intermediates occurs before the TNT decomposes completely. These studies show that the simulation of TNT pyrolysis using the ReaxFF/lg reactive force field can provide detailed kinetic and chemical information, which are helpful in understanding the detonation of energetic materials and assessing their security.
-
Keywords:
-
TNT
, - Pyrolysis,
- ReaxFF/lg,
- Carbon-containing cluster,
- Molecular dynamics
-
-
-
[1]
(1) Dubnikova, F.; Kosloff, R.; Almog, J.; Zeiri, Y.; Boese, R.;Itzhaky, H.; Alt, A.; Keinan, E. J. Am. Chem. Soc. 2005, 127,1146. doi: 10.1021/ja0464903
-
[2]
(2) Dong, L. M.; Li, X. D.; Yang, R. J. Acta Phys. -Chim. Sin. 2009,25 (5), 981. [董林茂, 李晓东, 杨荣杰. 物理化学学报, 2009,25 (5), 981.] doi: 10.3866/PKU.WHXB20090525
-
[3]
(3) Brill, T. B.; James, K. Chem. Rev. 1993, 93, 2667. doi: 10.1021/cr00024a005
-
[4]
(4) Brill, T. B.; James, K. J. Phys. Chem. 1993, 97, 8759. doi: 10.1021/j100136a018
-
[5]
(5) Long, G. T.; Brems, B. A.;Wight, C. A. Thermochim. Acta2002, 388, 175. doi: 10.1016/S0040-6031(02)00031-X
-
[6]
(6) McGuire, R. R.; Tarver, C. M. In Seventh Symposium (International) on Detonation, Proceedings, SeventhSymposium (International) on Detonation, Annapolis,Maryland, June 16-19, 1981; Short, J. M. Ed.; Silver Spring:Maryland, 1982; pp 56-60.
-
[7]
(7) Makashir, P. S.; Kurian, E. M. Journal of Thermal Analysis and Calorimetry 1999, 55, 173. doi: 10.1023/A:1010152626354
-
[8]
(8) Cohen, R.; Zeiri, Y.;Wurzberg, E.; Kosloff, R. J. Phys. Chem. A2007, 111, 11074. doi: 10.1021/jp072121s
-
[9]
(9) Van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; ddard,W. A.,III. J. Phys. Chem. A 2001, 105, 9396. doi: 10.1021/jp004368u
-
[10]
(10) (a) Plimpton, S. J. Comp. Phys. 1995, 117, 1.
-
[11]
(b) http://lammps.sandia. v. (accessed Apr 16, 2013).
-
[12]
(11) Zhou, T. T.; Shi, Y. D.; Huang, F. L. Acta Phys. -Chim. Sin.2012, 28 (11), 2605. [周婷婷, 石一丁, 黄风雷. 物理化学学报, 2012, 28 (11), 2605.] doi: 10.3866/PKU.WHXB201208031
-
[13]
(12) Zhang, L.; Chen, L.;Wang, C.;Wu, J. Y. Acta Phys. -Chim. Sin.2013, 29 (6), 1145. [张力, 陈朗, 王晨, 伍俊英. 物理化学学报, 2013, 29 (6), 1145.] doi: 10.3866/PKU.WHXB201303221
-
[14]
(13) Strachan, A.; Kober, E. M.; Van Duin, A. C. T.; Oxgaard, J.; ddard,W. A., III. J. Chem. Phys. 2005, 122, 054502. doi: 10.1063/1.1831277
-
[15]
(14) Zhou, T. T.; Huang, F. L. J. Phys. Chem. B 2011, 115, 278. doi: 10.1021/jp105805w
-
[16]
(15) Rom, N.; Zybin, S. V.; Van Duin, A. C. T.; ddard,W. A., III;Zeiri, Y.; Katz, G.; Kosloff, R. J. Phys. Chem. A 2011, 115,10181. doi: 10.1021/jp202059v
-
[17]
(16) Zhang, L. Z.; Zybin, S. V.; Van Duin, A. C. T.; Dasgupta, S.; ddard,W. A., III. J. Phys. Chem. A 2009, 113, 10619. doi: 10.1021/jp901353a
-
[18]
(17) Qian, H. J.; Van Duin, A. C. T.; Morokuma, K.; Irle, S. J. Chem. Theory Comput. 2011, 7, 2040. doi: 10.1021/ct200197v
-
[19]
(18) Weismiller, M. R.; Van Duin, A. C. T.; Lee, J.; Yetter, R. A.J. Phys. Chem. A 2010, 114, 5485. doi: 10.1021/jp100136c
-
[20]
(19) Agrawalla, S.; Van Duin, A. C. T. J. Phys. Chem. A 2011, 115,960. doi: 10.1021/jp108325e
-
[21]
(20) Liu, L. C.; Bai, C.; Sun, H. J. Phys. Chem. A 2011, 115,4941. doi: 10.1021/jp110435p
-
[22]
(21) Chenoweth, K.; Van Duin, A. C. T.; Dasgupta, S.; ddard,W.A., III. J. Phys. Chem. A 2009, 113, 1740. doi: 10.1021/jp8081479
-
[23]
(22) Ge, N. N.;Wei, Y. K.; Ji, G. F.; Chen, X. R.; Zhao, F.;Wei, D.Q. J. Phys. Chem. B 2012, 116, 13696. doi: 10.1021/jp309120t
-
[24]
(23) Strachan, A.; Van Duin, A. C. T.; Chakraborty, D.; Dasgupta, S.; ddard,W. A., III. Physical Review Letters 2003, 91 (9),098301. doi: 10.1103/PhysRevLett.91.098301
-
[25]
(24) Zhang, L.; Zybin, S. V.; Van Duin, A. C. T.; Dasgupta, S.; ddard,W. A. AIP Conference Proceedings 2006, 845,585. doi: 10.1063/1.2263390
-
[26]
(25) Budzien, J.; Thompson, A. P.; Zybin, S. V. J. Phys. Chem. B2009, 113, 13142. doi: 10.1021/jp9016695
-
[27]
(26) Zhang, L. Z.; Zybin, S. V.; Van Duin, A. C. T.; ddard,W. A.,III. Journal of Energetic Materials, 2010, 28, 92. doi: 10.1080/07370652.2010.504682
-
[28]
(27) Nomura, K.; Kalia, R. K.; Nakano, A.; Vashishta, P. Physical Review Letters 2007, 99, 148303. doi: 10.1103/PhysRevLett.99.148303
-
[29]
(28) An, Q.; Zybin, S. V.; ddard,W. A., III; Botero, A. J.; Blanco,M.; Luo, S. N. Phys. Rev. B 2011, 84, 220101(R). doi: 10.1103/PhysRevB.84.220101
-
[30]
(29) Brenner, D.W.; Robertson, D. H.; Elert, M. L.; White, C. T.Physical Review Letters 1993, 70, 2174. doi: 10.1103/PhysRevLett.70.2174
-
[31]
(30) Sapozhnikov, F. A.; Dremov, V. V.; Derbenev, I. V.; Karavaev,A. V.; Soulard, L. AIP Conference Proceedings 2007, 955, 463.
-
[32]
(31) Heim, A. J.; Jensen, N. G.; Kober, E. M.; Germann, T. C. Phys. Rev. E 2008, 78, 046710. doi: 10.1103/PhysRevE.78.046710
-
[33]
(32) Landerville, A. C.; Oleynik, I. I.; White, C. T. Shock Compression of Condensed Matter 2009, 1195, 813.
-
[34]
(33) Mayo, S. L.; Olafson, B. D.; ddard,W. A. Journal of Physical Chemistry 1990, 94, 8897.
-
[35]
(34) Rappe, A. K.; Casewit, C. J.; Colwell , K. S.; ddard,W. A.,III; Skiff,W. M. J. Am. Chem. Soc. 1992, 114, 10024. doi: 10.1021/ja00051a040
-
[36]
(35) Shi, Y. F.; Brenner, D.W. J. Phys. Chem. 2007, 127,134503. doi: 10.1063/1.2779877
-
[37]
(36) Shi, Y. F.; Brenner, D.W. J. Phys. Chem. C 2008, 112,6263. doi: 10.1021/jp7119735
-
[38]
(37) Ma, X. F.; Zhu,W. H; Xiao, J. J.; Xiao, H. M. Journal of Hazardous Materials 2008, 156, 201. doi: 10.1016/j.jhazmat.2007.12.068
-
[39]
(38) Liu, L. C.; Liu, Y.; Zybin, S. V.; Sun, H.; ddard,W. A., III. J. Phys. Chem. A 2011, 115, 11016. doi: 10.1021/jp201599t
-
[40]
(39) Zhou, T. T.; Zybin, S. V.; Liu, Y.; Huang, F. L.; ddard,W. A.J. Appl. Phys. 2012, 111, 124904. doi: 10.1063/1.4729114
-
[41]
(40) http://www.ccdc.cam.ac.uk (accessed Feb 26, 2013).
-
[42]
(41) Turner, A. G.; Davis, L. P. J. Am. Chem. Soc. 1984, 106,5447. doi: 10.1021/ja00331a011
-
[43]
(42) Viecelli, J. A.; Glosli, J. N. J. Chem. Phys. 2002, 117,11352. doi: 10.1063/1.1522395
-
[44]
(43) Mironov, E. V.; Petrov, E. A.; Korets, A. Y. Combust. Explos. Shock Waves 2004, 40, 473. doi: 10.1023/B:CESW.0000033571.82326.6a
-
[45]
(44) Kruger, A.; Kataoka, F.; Ozawa, M.; Fujino, T.; Suzuki, Y.;Aleksenski, A. E.; Vul, A. Y.; Osawa, E. Carbon 2005, 43,1722. doi: 10.1016/j.carbon.2005.02.020
-
[46]
(45) Ten, K. A.; Aulchenko, V. M.; Lukjanchikov, L. A.; Pruuel, E.R.; Shekhtman, L. I.; Tolochko, B. P.; Zhogin, I. L.; Zhulanov,V. V. Nuclear Instruments and Methods in Physics Research A2009, 603, 102. doi: 10.1016/j.nima.2008.12.176
-
[47]
(46) Chevrot, G.; Sollier, A.; Pineau, N. J. Chem. Phys. 2012, 136,084506. doi: 10.1063/1.3686750
-
[1]
-
-
[1]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[2]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[3]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[4]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[5]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[6]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[7]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[8]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[9]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[10]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[11]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[12]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[13]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[14]
Yunxin Xu , Wenbo Zhang , Jing Yan , Wangchang Geng , Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008
-
[15]
Lei Shu , Zimin Duan , Yushen Kang , Zijian Zhao , Hong Wang , Lihua Zhu , Hui Xiong , Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084
-
[16]
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
-
[17]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[18]
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
-
[19]
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
-
[20]
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
-
[1]
Metrics
- PDF Downloads(777)
- Abstract views(772)
- HTML views(13)