Citation:
LÜ Yong-Ge, LI Yong, TA Na, SHEN Wen-Jie. Morphology-Controlled Synthesis of Co3O4 Nanocubes and Their Catalytic Performance in CO Oxidation[J]. Acta Physico-Chimica Sinica,
;2014, 30(2): 382-388.
doi:
10.3866/PKU.WHXB201312032
-
Co3O4 nanocubes that were exclusively terminated with {100} facets of edge size 10 nm were solvothermally fabricated in a mixed solution of ethanol and triethylamine. Analyses of the structural evolution of the intermediates at different intervals during the synthesis, together with an examination of the influences of the cobalt precursor and solvent on the product structure, showed that the formation of Co3O4 nanocubes followed a dissolution-recrystallization mechanism. After calcination at 200 ℃, the as-synthesized Co3O4 material retained a cubic morphology with the same edge size, but calcination at 400 ℃ resulted in the formation of spherical Co3O4 particles of diameter about 13 nm. The Co3O4 nanocubes exhibited inferior activity in room-temperature CO oxidation compared with Co3O4 nanoparticles ({111} facets), primarily as a result of the exposure of the less- reactive {100} facets, demonstrating the morphology effect of Co3O4 nanomaterials.
-
Keywords:
-
Co3O4
, - Solvothermal synthesis,
- Morphology-dependence,
- Nanocube,
- CO oxidation
-
-
-
-
[1]
(1) Zhu, J. B.; Bai, L. F.; Sun, Y. F.; Zhang, X. D.; Li, Q. Y.; Cao, B.X.; Yan,W. S.; Xie, Y. Nanoscale 2013, 5, 5241. doi: 10.1039/c3nr01178j
-
[2]
(2) Tong, G. X.; Guan, J. G.; Zhang, Q. J. Adv. Funct. Mater. 2013,23, 2406. doi: 10.1002/adfm.v23.19
-
[3]
(3) Xiao, J.; Kuang, Q.; Yang, S.; Xiao, F.;Wang, S.; Guo, L. Sci. Rep. 2013, 3, 2300.
-
[4]
(4) Zhang, S. R.; Shan, J. J.; Zhu, Y.; Frenkel, A. I.; Patlolla, A.;Huang,W. X.; Yoon, S. J.;Wang, L.; Yoshida, H.; Takeda, S.;Tao, F. F. J. Am. Chem. Soc. 2013, 135, 8283. doi: 10.1021/ja401967y
-
[5]
(5) Xie, X.W.; Shen,W. J. Nanoscale 2009, 1, 50. doi: 10.1039/b9nr00155g
-
[6]
(6) Li, Y. H.; Huang, K. L.; Zeng, D. M.; Liu, S. Q. Prog. Chem.2010, 22, 2119. [李艳华, 黄可龙, 曾冬铭, 刘素琴. 化学进展,2010, 22, 2119.]
-
[7]
(7) Wang, Y.; Zhong, Z. Y.; Chen, Y.; Ng, C. T.; Lin, J. Y. Nano Res.2011, 4, 695. doi: 10.1007/s12274-011-0125-x
-
[8]
(8) Zhang, G. L.; Zhao, D.; Guo, P. Z.;Wei, Z. B.; Zhao, X. S. Acta Phys. -Chim. Sin. 2012, 28, 387. [张国梁, 赵丹, 郭培志, 位忠斌, 赵修松. 物理化学学报, 2012, 28, 387.] doi: 10.3866/PKU.WHXB201111241
-
[9]
(9) Jiao, Q. Z.; Fu, M.; You, C.; Zhao, Y.; Li, H. S. Inorg. Chem.2012, 51, 11513. doi: 10.1021/ic3013602
-
[10]
(10) Liu, Y. J.; Zhu, G. X.; Ge, B. L.; Zhou, H.; Yuan, A. H.; Shen,X. P. CrystEngComm 2012, 14, 6264. doi: 10.1039/c2ce25788b
-
[11]
(11) Yan, N.; Hu, L.; Li, Y.;Wang, Y.; Zhong, H.; Hu, X. Y.; Kong,X. K.; Chen, Q.W. J. Phys. Chem. C 2012, 116, 7227. doi: 10.1021/jp2126009
-
[12]
(12) Liu, X. M.; Long, Q.; Jiang, C. H.; Zhan, B. B.; Li, C.; Liu, S.J.; Zhao, Q.; Huang,W.; Dong, X. C. Nanoscale 2013, 5,6525. doi: 10.1039/c3nr00495c
-
[13]
(13) Ren, Z.; Guo, Y. B.; Zhang, Z. H.; Liu, C. H.; Gao, P. X.J. Mater. Chem. A 2013, 1, 9897. doi: 10.1039/c3ta11156c
-
[14]
(14) Wang, C. A.; Li, S.; An, L. N. Chem. Commun. 2013, 49,7427. doi: 10.1039/c3cc43094d
-
[15]
(15) Lv, Y. G.; Li, Y.; Shen,W. J. Catal. Commun. 2013, 42, 116. doi: 10.1016/j.catcom.2013.08.017
-
[16]
(16) Wang, M. S.; Chen, Q.W. Chem. Eur. J. 2010, 16, 12088. doi: 10.1002/chem.v16:40
-
[17]
(17) Xu, R.; Zeng, H. C. Langmuir 2004, 20, 9780. doi: 10.1021/la049164+
-
[18]
(18) He, T.; Chen, D. R.; Jiao, X. L.;Wang, Y. L.; Duan, Y. Z. Chem. Mater. 2005, 17, 4023. doi: 10.1021/cm050727s
-
[19]
(19) Hu, L. H.; Peng, Q.; Li, Y. D. J. Am. Chem. Soc. 2008, 130,16136. doi: 10.1021/ja806400e
-
[20]
(20) Yang, J. H.; Sasaki, T. Cryst. Growth Des. 2010, 10, 1233.doi: 10.1021/cg9012284
-
[21]
(21) Zhu, T.; Chen, J. S.; Lou, X.W. J. Mater. Chem. 2010, 20,7015. doi: 10.1039/c0jm00867b
-
[22]
(22) Teng, Y. H.; Yamamoto, S.; Kusano, Y.; Azuma, M.;Shimakawa, Y. Mater. Lett. 2010, 64, 239. doi: 10.1016/j.matlet.2009.10.039
-
[23]
(23) Song, X. C.;Wang, X.; Zheng, Y. F.; Ma, R.; Yin, H. Y.J. Nanopart. Res. 2011, 13, 1319. doi: 10.1007/s11051-010-0127-8
-
[24]
(24) Hu, L.; Yan, N.; Chen, Q.W. Zhang, P.; Zhong, H.; Zheng, X.R.; Li, Y.; Hu, X. Y. Chem. Eur. J. 2012, 18, 8971. doi: 10.1002/chem.v18.29
-
[25]
(25) Li, Y. L.; Zhao, J. Z.; Dan, Y. Y.; Ma, D. C.; Zhao, Y.; Hou, S.N.; Lin, H. B.;Wang, Z. C. Chem. Eng. J. 2011, 166, 428. doi: 10.1016/j.cej.2010.10.080
-
[26]
(26) Sun, C.; Su, X. T.; Xiao, F.; Niu, C. G.;Wang, J. D. Sensor Actuat. B-Chem. 2011, 157, 681. doi: 10.1016/j.snb.2011.05.039
-
[27]
(27) Chen, J. S.; Zhu, T.; Hu, Q. H.; Gao, J. J.; Su, F. B.; Qiao, S. Z.;Lou, X.W. ACS Appl. Mater. Interfaces 2010, 2, 3628. doi: 10.1021/am100787w
-
[28]
(28) Wang, M. S.; Zeng, L. K.; Chen, Q.W. Dalton Trans. 2011, 40,597. doi: 10.1039/c0dt00946f
-
[29]
(29) Feng, J.; Zeng, H. C. Chem. Mater. 2003, 15, 2829. doi: 10.1021/cm020940d
-
[30]
(30) Xu, R.; Zeng, H. C. J. Phys. Chem. B 2003, 107, 926. doi: 10.1021/jp021094x
-
[31]
(31) Guo, B.; Li, C. S.; Yuan, Z. Y. J. Phys. Chem. C 2010, 114,12805. doi: 10.1021/jp103705q
-
[32]
(32) Xie, X.W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen,W. J. Nature2009, 458, 746. doi: 10.1038/nature07877
-
[33]
(33) Xie, X.W.; Shang, P. J.; Liu, Z. Q.; Lv, Y. G.; Li, Y.; Shen,W. J.J. Phys. Chem. C 2010, 114, 2116. doi: 10.1021/jp911011g
-
[34]
(34) Broqvist, P.; Panas, I.; Persson, H. J. Catal. 2002, 210, 198. doi: 10.1006/jcat.2002.3678
-
[35]
(35) Jiang, D. E.; Dai, S. Phys. Chem. Chem. Phys. 2011, 13, 978.doi: 10.1039/c0cp01138j
-
[36]
(36) Pang, X. Y.; Liu, C.; Li, D. C.; Lv, C. Q.;Wang, G. C.ChemPhysChem 2013, 14, 204. doi: 10.1002/cphc.201200807
-
[37]
(37) Liu, Z. P.; Ma, R. Z.; Osada, M.; Takada, K.; Sasaki, T. J. Am. Chem. Soc. 2005, 127, 13869. doi: 10.1021/ja0523338
-
[38]
(38) Xu, Z. P.; Zeng, H. C. Chem. Mater. 1999, 11, 67. doi: 10.1021/cm980420b
-
[39]
(39) Cao, A. M.; Hu, J. S.; Liang, H. P.; Song,W. G.;Wan, L. J.; He,X. L.; Gao, X. G.; Xia, S. H. J. Phys. Chem. B 2006, 110,15858. doi: 10.1021/jp0632438
-
[40]
(40) Hu, L. H.; Sun, K. Q.; Peng, Q.; Xu, B. Q.; Li, Y. D. Nano Res.2010, 3, 363. doi: 10.1007/s12274-010-1040-2
-
[1]
-
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
-
[3]
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
-
[4]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[5]
Linping Li , Junhui Su , Yanping Qiu , Yangqin Gao , Ning Li , Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472
-
[6]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[7]
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098
-
[8]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[9]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[10]
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
-
[11]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027
-
[12]
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332
-
[13]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[14]
Mingjiao Lu , Zhixing Wang , Gui Luo , Huajun Guo , Xinhai Li , Guochun Yan , Qihou Li , Xianglin Li , Ding Wang , Jiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638
-
[15]
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
-
[16]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[17]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[18]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[19]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[20]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[1]
Metrics
- PDF Downloads(1123)
- Abstract views(1097)
- HTML views(10)