Citation: WU Ying-Xi, WANG Hong-Yan, LIN Yue-Xia. Aqueous Solution Effects on the Proton-Transfer Processes of GC and AT Base Pairs[J]. Acta Physico-Chimica Sinica, ;2014, 30(2): 257-264. doi: 10.3866/PKU.WHXB201312031 shu

Aqueous Solution Effects on the Proton-Transfer Processes of GC and AT Base Pairs

  • Received Date: 10 September 2013
    Available Online: 3 December 2013

    Fund Project: 国家自然科学基金(10974161,11174237),国家重点基础研究发展规划项目(973)(2013CB328904) (10974161,11174237),国家重点基础研究发展规划项目(973)(2013CB328904)四川省科技厅应用基础项目(2013JY0035)资助 (2013JY0035)

  • The effects of the first hydration shell and the bulk solvation effects on the proton-transfer processes of guanine-cytosine (GC) and adenine-thymine (AT) base pairs are studied based on density functional theory, using the B3LYP method and DZP++ basis set. The proton-transfer mechanisms of the GC and AT base pairs in bulk solvation are first single-proton transfer (SPT1) and stepwise double-proton transfer (DPT). When only the first hydration shell surrounded by five water molecules (GC ·5H2O, AT· 5H2O), or both the first hydration shell and bulk solvation effects through polarizable continuum model (PCM) (GC·5H2O+PCM, AT·5H2O+PCM) are considered, only the first single-proton-transfer mechanism (SPT1) is found. The proton- transfer activation energies of the GC and the AT base pairs show that the majority of the hydration effects come from the first hydration shell through hydrogen- bond interactions, therefore the first hydration shell greatly influences the base pair structures and proton-transfer mechanism.

  • 加载中
    1. [1]

      (1) Bao, X. G.;Wang, J.; Gu, J. D.; Leszczynski, J. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (15), 5658. doi: 10.1073/pnas.0510406103

    2. [2]

      (2) Boudaiffa, B.; Cloutier, P.; Hunting, D.; Huels, M. A.; Sanche,L. Science 2000, 287 (5458), 1658. doi: 10.1126/science.287.5458.1658

    3. [3]

      (3) Zheng, Y.; Cloutier, P.; Hunting, D. J.;Wagner, J. R.; Sanche, L.J. Am. Chem. Soc. 2004, 126 (4), 1002. doi: 10.1021/ja0388562

    4. [4]

      (4) Gresh, N.; S? poner, J. J. Phys. Chem. B 1999, 103 (51), 11415.doi: 10.1021/jp9921351

    5. [5]

      (5) Noguera, M.; Bertran, J.; Sodupe, M. J. Phys. Chem. B 2008,112 (15), 4817. doi: 10.1021/jp711982g

    6. [6]

      (6) Tan, Z. J.; Chen, S. J. Biophys. J. 2006, 90, 1175. doi: 10.1529/biophysj.105.070904

    7. [7]

      (7) Bowman, J. C.; Lenz, T. K.; Hud, N. V.;Williams, L. D. Cur. Opin. Struct. Biol. 2012, 22, 262. doi: 10.1016/j.sbi.2012.04.006

    8. [8]

      (8) Zhang, Y. Theoretical Investigation of Metal Cations Interactwith DNA Base Pair. Ph. D. Dissertation, Huazhong Universityof Science and Technology,Wuhan, 2004. [张愚. 金属离子与DNA碱基对相互作用的理论研究[D]. 武汉: 华中科技大学, 2004.]

    9. [9]

      (9) Shishkin, O. V.; rb, L.; Leszczynski, J. J. Phys. Chem. B2000, 104 (22), 5357. doi: 10.1021/jp993144c

    10. [10]

      (10) Herbert, H. E.; Halls, M. D.; Hratchian, H. P.; Raghavachari, K.J. Phys. Chem. B 2006, 110 (7), 3336. doi: 10.1021/jp055865j

    11. [11]

      (11) Matsui, T.; Shigeta, Y.; Hirao, K. Chem. Phys. Lett. 2006, 423 (4), 331.

    12. [12]

      (12) Noguera, M.; Bertran, J.; Sodupe, M. J. Phys. Chem. A 2004,108 (32), 333.

    13. [13]

      (13) Ai, H. Q.; Yang, A. B.; Li, Y. G. Acta Phys. -Chim. Sin. 2008,24, 1047. [艾洪奇, 杨爱彬, 李允刚. 物理化学学报, 2008,24, 1047.] doi: 10.3866/PKU.WHXB20080623

    14. [14]

      (14) Zhang, F.;Wang, H. Y.; Lin, Y. X. Acta Phys. -Chim. Sin. 2011,27, 2799. [张凤, 王红艳, 林月霞. 物理化学学报, 2011, 27,2799.] doi: 10.3866/PKU.WHXB20112799

    15. [15]

      (15) Löwdin, P. O. Rev. Mod. Phys. 1963, 35, 724. doi: 10.1103/RevModPhys.35.724

    16. [16]

      (16) Löwdin, P. O. Adv. Quantum Chem. 1966, 2, 213.

    17. [17]

      (17) Zhang, J. D.; Chen, Z. F.; Schaefer, H. F. J. Phys. Chem. A 2008,112 (27), 6217. doi: 10.1021/jp711958p

    18. [18]

      (18) Kumar, A.; Sevilla, M. D.; Sándor, S. J. Phys. Chem. B 2008,112 (16), 5189. doi: 10.1021/jp710957p

    19. [19]

      (19) Richardson, N. A.;Wesolowski, S. S.; Schaefer, H. F. J. Phys. Chem. B 2003, 107 (3), 848. doi: 10.1021/jp022111l

    20. [20]

      (20) Xie, Y. M.; Schaefer, H. F. J. Chem. Phys. 2007, 127, 155107.doi: 10.1063/1.2780148

    21. [21]

      (21) Schneider, B.; Cohen, D. M.; Schleifer, L.; Srinivasan, A. R.;Olson,W. K.; Bermant, H. M. Biophys. J. 1993, 65, 2291. doi: 10.1016/S0006-3495(93)81306-7

    22. [22]

      (22) Kumar, A.; Mishra, P. C.; Suhai, S. J. Phys. Chem. A 2005, 109,3971. doi: 10.1021/jp0456178

    23. [23]

      (23) Cerón-Carrasco, J. P.; Requena, A.; Michaux, C.; Perpete, E. A.;Jacquemin, D. J. Phys. Chem. A 2009, 113, 7892. doi: 10.1021/jp900782h

    24. [24]

      (24) Cerón-Carrasco, J. P.; Requena, A.; Michaux, C.; Perpete, E. A.;Jacquemin, D. J. Phys. Chem. A 2009, 113, 10549. doi: 10.1021/jp906551f

    25. [25]

      (25) Kumar, A.; Sevilla, M. D. J. Phys. Chem. B 2009, 113, 11359.doi: 10.1021/jp903403d

    26. [26]

      (26) Chen, H. Y.; Kao, C. L.; Hsu, S. C. N. J. Am. Chem. Soc. 2009,131, 15930. doi: 10.1021/ja906899p

    27. [27]

      (27) Chen, H. Y.; Hsu, S. C. N.; Kao, C. L. Phys. Chem. Chem. Phys.2010, 12, 1253. doi: 10.1039/b920603e

    28. [28]

      (28) Lin, Y. X.;Wang, H. Y.; Gao, S. M.;Wu, Y. X.; Li, R. H. Acta Phys. -Chim. Sin. 2013, 29, 1233. [林月霞, 王红艳, 高思敏,吴颖曦, 李汝虎. 物理化学学报, 2013, 29, 1233.] doi: 10.3866/PKU.WHXB201304022

    29. [29]

      (29) Wu, Y. X.;Wang, H. Y.; Lin, Y. X.; Gao, S. M.; Zhang, F. Can. J. Chem. 2013, 91, 992.

    30. [30]

      (30) Dargiewicz, M.; Biczysko, M.; Improta, R.; Barone, V. Phys. Chem. Chem. Phys. 2012, 14, 8981. doi: 10.1039/c2cp23890j

    31. [31]

      (31) Hsu, S. C. N.;Wang, T. P.; Kao, C. L.; Chen, H. F.; Yang, P. Y.;Chen, H. Y. J. Phys. Chem. B 2013, 117, 2096. doi: 10.1021/jp400299v

    32. [32]

      (32) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision A.1; Gaussian Inc.:Wallingford, CT, 2004.

    33. [33]

      (33) Latajka, Z.; Bouteiller, Y. J. Chem. Phys. 1994, 101, 9793. doi: 10.1063/1.467944

    34. [34]

      (34) Lee, C.; Fitzgerald, G.; Planas, M.; Novoa, J. J. J. Phys. Chem.1996, 100, 7398. doi: 10.1021/jp953360v

    35. [35]

      (35) Huzinaga, S. J. Chem. Phys. 1965, 42, 1293. doi: 10.1063/1.1696113

    36. [36]

      (36) Dunning, T. H. J. Chem. Phys. 1970, 53, 2823. doi: 10.1063/1.1674408

    37. [37]

      (37) Schneider, B.; Berman, H. M. Biophys. J. 1995, 69, 2661. doi: 10.1016/S0006-3495(95)80136-0

    38. [38]

      (38) Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55 (1),117. doi: 10.1016/0301-0104(81)85090-2

    39. [39]

      (39) Miertus, S.; Tomasi, J. Chem. Phys. 1982, 65 (2), 239. doi: 10.1016/0301-0104(82)85072-6

    40. [40]

      (40) Wang, H. Y.; Zhang, J. D.; Schaefer, H. F. Chem. Phys. Chem.2010, 11, 622. doi: 10.1002/cphc.200900687

    41. [41]

      (41) Noguera, M.; Sodupe, M.; Bertrán, J. Theor. Chem. Acc. 2007,118, 113. doi: 10.1007/s00214-007-0248-z

    42. [42]

      (42) Florián, J.; LeszczyDski, J. J. Am. Chem. Soc. 1996, 118, 3010.doi: 10.1021/ja951983g


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    7. [7]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    10. [10]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    11. [11]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

    12. [12]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    13. [13]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    14. [14]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    15. [15]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    16. [16]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    17. [17]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    18. [18]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    19. [19]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    20. [20]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

Metrics
  • PDF Downloads(442)
  • Abstract views(688)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return