Citation: WU Ying-Xi, WANG Hong-Yan, LIN Yue-Xia. Aqueous Solution Effects on the Proton-Transfer Processes of GC and AT Base Pairs[J]. Acta Physico-Chimica Sinica, ;2014, 30(2): 257-264. doi: 10.3866/PKU.WHXB201312031 shu

Aqueous Solution Effects on the Proton-Transfer Processes of GC and AT Base Pairs

  • Received Date: 10 September 2013
    Available Online: 3 December 2013

    Fund Project: 国家自然科学基金(10974161,11174237),国家重点基础研究发展规划项目(973)(2013CB328904) (10974161,11174237),国家重点基础研究发展规划项目(973)(2013CB328904)四川省科技厅应用基础项目(2013JY0035)资助 (2013JY0035)

  • The effects of the first hydration shell and the bulk solvation effects on the proton-transfer processes of guanine-cytosine (GC) and adenine-thymine (AT) base pairs are studied based on density functional theory, using the B3LYP method and DZP++ basis set. The proton-transfer mechanisms of the GC and AT base pairs in bulk solvation are first single-proton transfer (SPT1) and stepwise double-proton transfer (DPT). When only the first hydration shell surrounded by five water molecules (GC ·5H2O, AT· 5H2O), or both the first hydration shell and bulk solvation effects through polarizable continuum model (PCM) (GC·5H2O+PCM, AT·5H2O+PCM) are considered, only the first single-proton-transfer mechanism (SPT1) is found. The proton- transfer activation energies of the GC and the AT base pairs show that the majority of the hydration effects come from the first hydration shell through hydrogen- bond interactions, therefore the first hydration shell greatly influences the base pair structures and proton-transfer mechanism.

  • 加载中
    1. [1]

      (1) Bao, X. G.;Wang, J.; Gu, J. D.; Leszczynski, J. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (15), 5658. doi: 10.1073/pnas.0510406103

    2. [2]

      (2) Boudaiffa, B.; Cloutier, P.; Hunting, D.; Huels, M. A.; Sanche,L. Science 2000, 287 (5458), 1658. doi: 10.1126/science.287.5458.1658

    3. [3]

      (3) Zheng, Y.; Cloutier, P.; Hunting, D. J.;Wagner, J. R.; Sanche, L.J. Am. Chem. Soc. 2004, 126 (4), 1002. doi: 10.1021/ja0388562

    4. [4]

      (4) Gresh, N.; S? poner, J. J. Phys. Chem. B 1999, 103 (51), 11415.doi: 10.1021/jp9921351

    5. [5]

      (5) Noguera, M.; Bertran, J.; Sodupe, M. J. Phys. Chem. B 2008,112 (15), 4817. doi: 10.1021/jp711982g

    6. [6]

      (6) Tan, Z. J.; Chen, S. J. Biophys. J. 2006, 90, 1175. doi: 10.1529/biophysj.105.070904

    7. [7]

      (7) Bowman, J. C.; Lenz, T. K.; Hud, N. V.;Williams, L. D. Cur. Opin. Struct. Biol. 2012, 22, 262. doi: 10.1016/j.sbi.2012.04.006

    8. [8]

      (8) Zhang, Y. Theoretical Investigation of Metal Cations Interactwith DNA Base Pair. Ph. D. Dissertation, Huazhong Universityof Science and Technology,Wuhan, 2004. [张愚. 金属离子与DNA碱基对相互作用的理论研究[D]. 武汉: 华中科技大学, 2004.]

    9. [9]

      (9) Shishkin, O. V.; rb, L.; Leszczynski, J. J. Phys. Chem. B2000, 104 (22), 5357. doi: 10.1021/jp993144c

    10. [10]

      (10) Herbert, H. E.; Halls, M. D.; Hratchian, H. P.; Raghavachari, K.J. Phys. Chem. B 2006, 110 (7), 3336. doi: 10.1021/jp055865j

    11. [11]

      (11) Matsui, T.; Shigeta, Y.; Hirao, K. Chem. Phys. Lett. 2006, 423 (4), 331.

    12. [12]

      (12) Noguera, M.; Bertran, J.; Sodupe, M. J. Phys. Chem. A 2004,108 (32), 333.

    13. [13]

      (13) Ai, H. Q.; Yang, A. B.; Li, Y. G. Acta Phys. -Chim. Sin. 2008,24, 1047. [艾洪奇, 杨爱彬, 李允刚. 物理化学学报, 2008,24, 1047.] doi: 10.3866/PKU.WHXB20080623

    14. [14]

      (14) Zhang, F.;Wang, H. Y.; Lin, Y. X. Acta Phys. -Chim. Sin. 2011,27, 2799. [张凤, 王红艳, 林月霞. 物理化学学报, 2011, 27,2799.] doi: 10.3866/PKU.WHXB20112799

    15. [15]

      (15) Löwdin, P. O. Rev. Mod. Phys. 1963, 35, 724. doi: 10.1103/RevModPhys.35.724

    16. [16]

      (16) Löwdin, P. O. Adv. Quantum Chem. 1966, 2, 213.

    17. [17]

      (17) Zhang, J. D.; Chen, Z. F.; Schaefer, H. F. J. Phys. Chem. A 2008,112 (27), 6217. doi: 10.1021/jp711958p

    18. [18]

      (18) Kumar, A.; Sevilla, M. D.; Sándor, S. J. Phys. Chem. B 2008,112 (16), 5189. doi: 10.1021/jp710957p

    19. [19]

      (19) Richardson, N. A.;Wesolowski, S. S.; Schaefer, H. F. J. Phys. Chem. B 2003, 107 (3), 848. doi: 10.1021/jp022111l

    20. [20]

      (20) Xie, Y. M.; Schaefer, H. F. J. Chem. Phys. 2007, 127, 155107.doi: 10.1063/1.2780148

    21. [21]

      (21) Schneider, B.; Cohen, D. M.; Schleifer, L.; Srinivasan, A. R.;Olson,W. K.; Bermant, H. M. Biophys. J. 1993, 65, 2291. doi: 10.1016/S0006-3495(93)81306-7

    22. [22]

      (22) Kumar, A.; Mishra, P. C.; Suhai, S. J. Phys. Chem. A 2005, 109,3971. doi: 10.1021/jp0456178

    23. [23]

      (23) Cerón-Carrasco, J. P.; Requena, A.; Michaux, C.; Perpete, E. A.;Jacquemin, D. J. Phys. Chem. A 2009, 113, 7892. doi: 10.1021/jp900782h

    24. [24]

      (24) Cerón-Carrasco, J. P.; Requena, A.; Michaux, C.; Perpete, E. A.;Jacquemin, D. J. Phys. Chem. A 2009, 113, 10549. doi: 10.1021/jp906551f

    25. [25]

      (25) Kumar, A.; Sevilla, M. D. J. Phys. Chem. B 2009, 113, 11359.doi: 10.1021/jp903403d

    26. [26]

      (26) Chen, H. Y.; Kao, C. L.; Hsu, S. C. N. J. Am. Chem. Soc. 2009,131, 15930. doi: 10.1021/ja906899p

    27. [27]

      (27) Chen, H. Y.; Hsu, S. C. N.; Kao, C. L. Phys. Chem. Chem. Phys.2010, 12, 1253. doi: 10.1039/b920603e

    28. [28]

      (28) Lin, Y. X.;Wang, H. Y.; Gao, S. M.;Wu, Y. X.; Li, R. H. Acta Phys. -Chim. Sin. 2013, 29, 1233. [林月霞, 王红艳, 高思敏,吴颖曦, 李汝虎. 物理化学学报, 2013, 29, 1233.] doi: 10.3866/PKU.WHXB201304022

    29. [29]

      (29) Wu, Y. X.;Wang, H. Y.; Lin, Y. X.; Gao, S. M.; Zhang, F. Can. J. Chem. 2013, 91, 992.

    30. [30]

      (30) Dargiewicz, M.; Biczysko, M.; Improta, R.; Barone, V. Phys. Chem. Chem. Phys. 2012, 14, 8981. doi: 10.1039/c2cp23890j

    31. [31]

      (31) Hsu, S. C. N.;Wang, T. P.; Kao, C. L.; Chen, H. F.; Yang, P. Y.;Chen, H. Y. J. Phys. Chem. B 2013, 117, 2096. doi: 10.1021/jp400299v

    32. [32]

      (32) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision A.1; Gaussian Inc.:Wallingford, CT, 2004.

    33. [33]

      (33) Latajka, Z.; Bouteiller, Y. J. Chem. Phys. 1994, 101, 9793. doi: 10.1063/1.467944

    34. [34]

      (34) Lee, C.; Fitzgerald, G.; Planas, M.; Novoa, J. J. J. Phys. Chem.1996, 100, 7398. doi: 10.1021/jp953360v

    35. [35]

      (35) Huzinaga, S. J. Chem. Phys. 1965, 42, 1293. doi: 10.1063/1.1696113

    36. [36]

      (36) Dunning, T. H. J. Chem. Phys. 1970, 53, 2823. doi: 10.1063/1.1674408

    37. [37]

      (37) Schneider, B.; Berman, H. M. Biophys. J. 1995, 69, 2661. doi: 10.1016/S0006-3495(95)80136-0

    38. [38]

      (38) Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55 (1),117. doi: 10.1016/0301-0104(81)85090-2

    39. [39]

      (39) Miertus, S.; Tomasi, J. Chem. Phys. 1982, 65 (2), 239. doi: 10.1016/0301-0104(82)85072-6

    40. [40]

      (40) Wang, H. Y.; Zhang, J. D.; Schaefer, H. F. Chem. Phys. Chem.2010, 11, 622. doi: 10.1002/cphc.200900687

    41. [41]

      (41) Noguera, M.; Sodupe, M.; Bertrán, J. Theor. Chem. Acc. 2007,118, 113. doi: 10.1007/s00214-007-0248-z

    42. [42]

      (42) Florián, J.; LeszczyDski, J. J. Am. Chem. Soc. 1996, 118, 3010.doi: 10.1021/ja951983g


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    6. [6]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    11. [11]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    12. [12]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    18. [18]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

Metrics
  • PDF Downloads(442)
  • Abstract views(750)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return