Citation: ZHU Yun-Cheng, WANG Er-Qiong, MA Guo-Lin, KANG Yan-Biao, ZHAO Lin-Hong, LIU Yang-Zhong. Interaction of C-Terminal Metal-Binding Domain of Copper Transport Protein with Ag+ and Hg2+[J]. Acta Physico-Chimica Sinica, ;2014, 30(1): 1-7. doi: 10.3866/PKU.WHXB201311263
-
Copper transport protein (CTR1), which is essential for copper uptake, also plays an important role in the cellular uptake of other heavy metal ions. In this work, the interactions of the C-terminal metalbinding domain of human CTR1 (C8) with both Ag+ and Hg2+ were studied, using ultraviolet-visible (UV-Vis) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and mass spectrometry (MS). The results showed that Ag+ and Hg2+ bind to C8 by different binding modes. Each C8 binds to two Ag+, whereas one Hg2+ crosslinks two C8 units. In addition, the coordination of Ag+ to C8 has an intermediate exchange rate, whereas the binding of Hg2+ to C8 has a fast exchange rate. The cysteine residue of C8 is one of the most important binding sites for both Ag+ and Hg2+. However, histidine residues are also involved in the metalbinding process. Ag+ binds histidine preferentially, whereas Hg2+ prefers to bind to cysteine residues. Although the HCH motif of C8 is crucial for metal binding, some other residues can also participate in the binding of Ag+. These residues may be involved in the metal-transfer process in the cellular uptake of Ag+ by CTR1. These results provide important information for a better understanding of the mechanism of cellular uptake of metal ions by CTR1.
-
-
[1]
(1) Lutsenko, S. Curr. Opin. Chem. Biol. 2010, 14 (2), 211. doi: 10.1016/j.cbpa.2010.01.003
-
[2]
(2) Purchase, R. Sci. Prog. 2013, 96 (Pt 1), 19.
-
[3]
(3) Sharp, P. A. Int. J. Biochem. Cell Biol. 2003, 35 (3), 288. doi: 10.1016/S1357-2725(02)00134-6
-
[4]
(4) Maryon, E. B.; Molloy, S. A.; Zimnicka, A. M.; Kaplan, J. H.Biometals 2007, 20 (3-4), 355. doi: 10.1007/s10534-006-9066-3
-
[5]
(5) Kim, B. E.; Nevitt, T.; Thiele, D. J. Nat. Chem. Biol. 2008, 4 (3),176. doi: 10.1038/nchembio.72
-
[6]
(6) Aller, S. G.; Unger, V. M. Proc. Natl. Acad. Sci. U. S. A. 2006,103 (10), 3627. doi: 10.1073/pnas.0509929103
-
[7]
(7) De Feo, C. J.; Aller, S. G.; Unger, V. M. Biometals 2007, 20 (3-4), 705. doi: 10.1007/s10534-006-9054-7
-
[8]
(8) De Feo, C. J.; Aller, S. G.; Siluvai, G. S.; Blackburn, N. J.;Unger, V. M. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (11),4237. doi: 10.1073/pnas.0810286106
-
[9]
(9) Schushan, M.; Barkan, Y.; Haliloglu, T.; Ben-Tal, N. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (24), 10908. doi: 10.1073/pnas.0914717107
-
[10]
(10) Puig, S.; Lee, J.; Lau, M.; Thiele, D. J. J. Biol. Chem. 2002, 277 (29), 26021. doi: 10.1074/jbc.M202547200
-
[11]
(11) Liang, Z. D.; Stockton, D.; Savaraj, N.; Kuo, M. T. Mol. Pharmacol. 2009, 76 (4), 843. doi: 10.1124/mol.109.056416
-
[12]
(12) Kuo, M. T.; Fu, S.; Savaraj, N.; Chen, H. H. Cancer Res. 2012,72 (18), 4616. doi: 10.1158/0008-5472.CAN-12-0888
-
[13]
(13) Bertinato, J.; Cheung, L.; Hoque, R.; Plouffe, L. J. J. Trace. Elem. Med. Biol. 2010, 24 (3), 178. doi: 10.1016/j.jtemb.2010.01.009
-
[14]
(14) Liang, Z. D.; Long, Y.; Chen, H. H.; Savaraj, N.; Kuo, M. T.J. Biol. Inorg. Chem. 2013,
-
[15]
(15) Howell, S. B.; Safaei, R.; Larson, C. A.; Sailor, M. J. Mol. Pharmacol. 2010, 77 (6), 887. doi: 10.1124/mol.109.063172
-
[16]
(16) Wang, X. H.; Du, X. B.; Li, H. Y.; Chan, D. S. B.; Sun, H. Z.Angew. Chem. Int. Edit. 2011, 50 (12), 2706. doi: 10.1002/anie.201006739
-
[17]
(17) Wang, E. Q.; Xi, Z. Y.; Li, Y.; Li, L. Z.; Zhao, L. H.; Ma, G. L.;Liu, Y. Z. Inorg. Chem. 2013, 52 (10), 6153. doi: 10.1021/ic400495w
-
[18]
(18) Lee, J.; Pena, M. M. O.; Nose, Y.; Thiele, D. J. J. Biol. Chem.2002, 277 (6), 4380. doi: 10.1074/jbc.M104728200
-
[19]
(19) Maillard, J. Y.; Hartemann, P. Crit. Rev. Microbiol. 2013, 39 (4),373. doi: 10.3109/1040841X.2012.713323
-
[20]
(20) Liu, R.; Zhang, Y.; Zhang, S. Y.; Qiu,W.; Gao, Y. Appl. Spectrosc. Rev. 2014, 49 (2), 121. doi: 10.1080/05704928.2013.807817
-
[21]
(21) Trop, M.; Novak, M.; Rodl, S.; Hellbom, B.; Kroell,W.; essler,W. J. Trauma 2006, 60 (3), 648. doi: 10.1097/01.ta.0000208126.22089.b6
-
[22]
(22) Drake, P. L.; Hazelwood, K. J. Ann. Occup. Hyg. 2005, 49 (7),575. doi: 10.1093/annhyg/mei019
-
[23]
(23) Wang, C. S.; Liu, P.; Yu, N. Acta Phys. -Chim. Sin. 2013, 29 (6),1173. [王长生, 刘朋, 于楠. 物理化学学报, 2013, 29 (6),1173.] doi: 10.3866/PKU.WHXB201303153
-
[24]
(24) Chen, Z. J.; Jiang, Q. L.; He, G.; Han, B.; Guo, L. Acta Phys. -Chim. Sin. 2013, 29 (8), 1793. [陈正军, 蒋庆琳,何谷, 韩波, 郭丽. 物理化学学报, 2013, 29 (8), 1793.]doi: 10.3866/PKU.WHXB201305152
-
[25]
(25) Palumaa, P.; Kangur, L.; Voronova, A.; Sillard, R. Biochem. J.2004, 382, 307. doi: 10.1042/BJ20040360
-
[26]
(26) Du, X. B.; Li, H. Y.;Wang, X. H.; Liu, Q.; Ni, J. Z.; Sun, H. Z.Chem. Commun. 2013, 49, 9134. doi: 10.1039/c3cc45360j
-
[1]
-
-
[1]
Jinkang Jin , Yidian Sheng , Ping Lu , Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054
-
[2]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[3]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[4]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[5]
Wei Shao , Wanqun Zhang , Pingping Zhu , Wanqun Hu , Qiang Zhou , Weiwei Li , Kaiping Yang , Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048
-
[6]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[7]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[8]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[9]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[10]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[11]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[12]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
-
[13]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[14]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[15]
Dongqi Cai , Fuping Tian , Zerui Zhao , Yanjuan Zhang , Yue Dai , Feifei Huang , Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031
-
[16]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[17]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[18]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[19]
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
-
[20]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[1]
Metrics
- PDF Downloads(623)
- Abstract views(978)
- HTML views(11)