Citation: LUO Bing, XIA Da-Hai. Characterization of pH Effect on Corrosion Resistance of Nuclear Steam Generator Tubing Alloy by In-situ Scanning Electrochemical Microscopy[J]. Acta Physico-Chimica Sinica, ;2014, 30(1): 59-66. doi: 10.3866/PKU.WHXB201311221
-
The effect of pH on the corrosion resistance of Alloy 800, one of the preferred nuclear steam generator tubing materials, was investigated using in-situ scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy (EIS). The experimental results show that positive feedback is observed in the probe approach curve (PAC) in acidic chloride solutions, indicating that Alloy 800 is active in acidic solutions; the EIS at the corrosion potential in acidic solutions exhibits an intact capacitance arc. However, negative feedbacks are observed in the PAC in either neutral or basic chloride solutions, showing that Alloy 800 is self-passivated in these two solutions. The EIS plots at different anodic potentials show incomplete capacitance arcs, and the arc radius decreases with increasing potential, indicating that the corrosion resistance of the passive film decreases. The SECM images show that the surface reactivity increases (or the dissolution rate of the passive film increases) as the polarization potential increases from the corrosion potential to the positive direction; this is verified by an increased tip current. Some "active spots" can be seen on the SECM images in neutral or basic chloride solutions, which are possibly related to grain boundaries, triple points, and/or inclusions.
-
-
[1]
(1) Pandey, M. D.; Datla, S.; Tapping, R. L.; Lu, Y. C. Nuclear Engineering and Design 2009, 239, 1862. doi: 10.1016/j.nucengdes.2009.05.027
-
[2]
(2) Lu, B. T.; Luo, J. L.; Lu, Y. C. Electrochimica Acta 2013, 87,824. doi: 10.1016/j.electacta.2012.10.006
-
[3]
(3) Lu, B. T.; Luo, J. L.; Lu, Y. C. Electrochimica Acta 2008, 53,4122. doi: 10.1016/j.electacta.2007.12.070
-
[4]
(4) Xia, D. H.; Shi, J. B.; ng,W. Q.; Zhou, R. J.; Gao, Z. M.;Wang, J. H. Electrochemistry 2012, 80, 907. doi: 10.5796/electrochemistry.80.907
-
[5]
(5) Xia, D. H.; Song, S. Z.;Wang, J. H.; Shi, J. B.; Bi, H. C.; Gao,Z. M. Electrochemistry Communications 2012, 15, 88. doi: 10.1016/j.elecom.2011.11.032
-
[6]
(6) Xia, D. H.; Song, S. Z.; ng,W. Q.; Jiang, Y. X.; Gao, Z. M.;Wang, J. H. Journal of Food Engineeering 2012, 113, 11. doi: 10.1016/j.jfoodeng.2012.05.035
-
[7]
(7) Zheng, X.; Xia, D. H.;Wang, H. H.; Fu, C.W. Anti-Corrosion Methods and Materials 2013, 60, 153. doi: 10.1108/00035591311315382
-
[8]
(8) Zhou, C.;Wang, J. H., Song, S. Z.; Xia, D. H.,Wang, K.; Shen,C.; Luo, B.; Shi, J. B. Journal of Wuhan University of Technology (Mater. Sci. Ed.) 2013, 28, 367. doi: 10.1007/s11595-013-0697-2
-
[9]
(9) Xia, D. H.; Song, S. Z.; Zhu, R. K.; Behnamian, Y.; Shen, C.;Wang, J. H.; Luo, J. L.; Lu, Y. C.; Klimas, S. Electrochimica Acta 2013, 111, 510. doi: 10.1016/j.electacta.2013.08.030
-
[10]
(10) Xia, D. H.;Wang, J. H.; Jiang, Y. X.; Li, N.; Zhou, C. Journal of Tianjin University (Science and Technology) 2013, 46, 503.[夏大海, 王吉会, 蒋雨轩, 李娜, 周超. 天津大学学报(自然科学与工程技术版), 2013, 46, 503.] doi: 10.11784/tdxb20130606
-
[11]
(11) Xia, D. H.; Song, S. Z.;Wang, J. H.; Bi, H. C.; Han, Z.W. Acta Physico-Chimica Sinica 2012, 28, 121. [夏大海, 宋诗哲, 王吉会, 毕慧超, 韩哲文. 物理化学学报, 2012, 28, 121.] doi: 10.3866/PKU.WHXB201228121
-
[12]
(12) Boissy, C.; Alemany-Dumont, C.; Normand, B.Electrochemistry Communications 2013, 26, 10. doi: 10.1016/j.elecom.2012.09.040
-
[13]
(13) Zhao, R.; Zhang, Z.; Shi, J. B.; Tao, L.; Song, S. Z. Journal of Central South University of Technology 2010, 17, 13. doi: 10.1007/s11771-010-0003-9
-
[14]
(14) Zhu, R. K.; Luo, J. L. Electrochemistry Communications 2010,12, 1752. doi: 10.1016/j.elecom.2010.10.014
-
[15]
(15) Zhu, R. K.; Lu, B. T.; Luo, J. L.; Lu, Y. C. Applied Surface Science 2013, 270, 755. doi: 10.1016/j.apsusc.2013.01.150
-
[16]
(16) Cristina, V.; Cuesta, A. Electrochimica Acta 2011, 56, 6847.doi: 10.1016/j.electacta.2011.05.094
-
[17]
(17) Zuili, D.; Maurice, V.; Marcus, P. Journal of Physical Chemistry B 1999, 103, 7896. doi: 10.1021/jp9911088
-
[18]
(18) Hai, N. T. M.; Huemann, S.; Hunger, R.; Jaegermann,W.;Wandelt, K.; Broekmann, P. Journal of Physical Chemistry C2007, 111, 14768. doi: 10.1021/jp072826u
-
[19]
(19) Machet, A.; Galtayries, A.; Zanna, S.; Klein, L.; Maurice, V.;Jolivet, P.; Foucault, M.; Combrade, P.; Scott, P.; Marcus, P.Electrochimica Acta 2004, 49, 3957. doi: 10.1016/j.electacta.2004.04.032
-
[20]
(20) Szocs, E.; Bako, I.; Kosztolanyi, T.; Bertoti, I.; Kalman, E.Electrochimica Acta 2004, 49, 1371.
-
[21]
(21) Zhu, R. K.; Qin, Z. Q.; Noel, J. J.; Shoesmith, D.W.; Ding, Z. F.Analytical Chemistry 2008, 80, 1437. doi: 10.1021/ac701796u
-
[22]
(22) Calhoun, R. L.; Bard, A. J. Journal of the Electrochemical Society 2012, 159, F42.
-
[23]
(23) Nickchi, T.; Alfantazi, A. Electrochimica Acta 2011, 58, 743.doi: 10.1016/j.electacta.2011.10.029
-
[24]
(24) Ha, H. Y.; Kwon, H. S. Journal of The Electrochemical Society2012, 159, C416.
-
[25]
(25) Yang, Q.; Luo, J. L. Electrochimica Acta 2000, 45, 3927. doi: 10.1016/S0013-4686(00)00492-8
-
[26]
(26) Zhang, Y.; Urquidi-MacDonald, M.; Engelhardt, G. R.;MacDonald, D. D. Electrochimica Acta 2012, 69, 1. doi: 10.1016/j.electacta.2012.01.022
-
[27]
(27) Sloppy, J. D.; Lu, Z.; Dickey, E. C.; MacDonald, D. D.Electrochimica Acta 2013, 87, 82. doi: 10.1016/j.electacta.2012.08.014
-
[28]
(28) Zhang, Y.; Urquidi-MacDonald, M.; Engelhardt, G. R.;MacDonald, D. D. Electrochimica Acta 2012, 69, 12. doi: 10.1016/j.electacta.2012.01.023
-
[29]
(29) Maurice, V.; Despert, G.; Zanna, S.; Bacos, M. P.; Marcus, P.Nature Materials 2004, 3, 687. doi: 10.1038/nmat1203
-
[30]
(30) Birbilis, N.; Buchheit, R. G. Journal of the Electrochemical Society 2008, 155, C117.
-
[31]
(31) Zaid, B.; Saidi, D.; Benzaid, A.; Hadji, S. Corrosion Science2008, 50, 1841. doi: 10.1016/j.corsci.2008.03.006
-
[32]
(32) McCafferty, E. Journal of the Electrochemical Society 1999,146, 2863. doi: 10.1149/1.1392021
-
[1]
-
-
[1]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[2]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[3]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[4]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[5]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[6]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[7]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[8]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[9]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[10]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[11]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[12]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[13]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[14]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[15]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[16]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[17]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[18]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[19]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[20]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[1]
Metrics
- PDF Downloads(515)
- Abstract views(770)
- HTML views(14)