Citation: LIANG Qian, ZHAO Zhen, LIU Jian, WEI Yue-Chang, JIANG Gui-Yuan, DUAN Ai-Jun. Pd Nanoparticles Deposited on Metal-Organic Framework of MIL-53(Al):an Active Catalyst for CO Oxidation[J]. Acta Physico-Chimica Sinica, ;2014, 30(1): 129-134. doi: 10.3866/PKU.WHXB201311201 shu

Pd Nanoparticles Deposited on Metal-Organic Framework of MIL-53(Al):an Active Catalyst for CO Oxidation

  • Received Date: 26 August 2013
    Available Online: 20 November 2013

    Fund Project: 国家自然科学基金(21073235,21173270,21177160) (21073235,21173270,21177160)国家高技术研究发展计划(863) (2013AA061902)资助项目 (863) (2013AA061902)

  • Pd nanoparticles (NPs) supported on a metal-organic framework (MOF), MIL-53(Al) (MIL: Materials of Institut Lavoisier), were prepared using the incipient wetness impregnation method. The structures of the synthesized Pd/MIL-53(Al) catalysts were determined using X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The same peaks were observed in the XRD patterns of Pd/MIL-53(Al) before and after the catalytic reaction, confirming that the integrity of the MIL-53(Al) support was maintained. The TEM results indicated that the crystalline porous structure of MIL-53(Al) favored the formation of highly dispersed Pd NPs of average size 2.21 nm. The heterogeneous catalytic composite materials exhibited high activities for CO oxidation, with full conversion at 115 ℃. The catalytic activity and structure of Pd/MIL-53(Al) were stable after several reaction runs.

  • 加载中
    1. [1]

      (1) Wang, R.; He, H.; Liu, L. C.; Dai, H. X.; Zhao, Z. Catal. Sci. Technol. 2012, 2, 575. doi: 10.1039/c2cy00417h

    2. [2]

      (2) Li, L.;Wang, A. Q.; Qiao, B. T.; Lin, J.; Huang, Y. Q.;Wang, X.D.; Zhang, T. J. Catal. 2013, 299, 90. doi: 10.1016/j.jcat.2012.11.019

    3. [3]

      (3) Zhan, Y. Y.; Cai, G. H.; Zheng, Y.; Shen, X. N.; Zheng, Y.;Wei,K. M. Acta Phys. -Chim. Sin. 2008, 24, 171. [詹瑛瑛, 蔡国辉,郑勇, 沈小女, 郑瑛, 魏可镁. 物理化学学报, 2008, 24,171.] doi: 10.3866/PKU.WHXB20080131

    4. [4]

      (4) Liang, Q.; Liu, J.;Wei, Y. C.; Zhao, Z.; MacLachlan, J. M.Chem. Commun. 2013, 49, 8928. doi: 10.1039/c3cc44500c

    5. [5]

      (5) Wei, Y. C.; Liu, J.; Zhao, Z.; Chen, Y.; Xu, C.; Duan, A. J.;Jiang, G. Y.; He, H. Angew. Chem. Int. Edit. 2011, 50, 2326. doi: 10.1002/anie.201006014

    6. [6]

      (6) Müller, M.; Turner, S.; Lebedev, O. I.;Wang, Y.; Tendeloo, G.;Fischer, R. A. Eur. J. Inorg. Chem. 2011, 1876.

    7. [7]

      (7) Jiang, H.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 1304. doi: 10.1021/ja1099006

    8. [8]

      (8) Hermannsdorfer, J.; Kempe, R. Chem. Eur. J. 2011, 17, 8071.doi: 10.1002/chem.v17.29

    9. [9]

      (9) Gu, X.; Lu, Z.; Jiang, H.; Akita, T.; Xu, Q. J. Am. Chem. Soc.2011, 133, 11822. doi: 10.1021/ja200122f

    10. [10]

      (10) Bourrelly, S.; Llewellyn, P. L.; Serre, C.; Millange, F.; Loiseau,T.; Ferey, G. J. Am. Chem. Soc. 2005, 127, 13519. doi: 10.1021/ja054668v

    11. [11]

      (11) Esken, D.; Turner, S.; Lebedev, O. I.; Tendeloo, G. V.; Fischer,R. A. Chem. Mater. 2010, 22, 6393. doi: 10.1021/cm102529c

    12. [12]

      (12) Luz, I.; Xamena, F. X.; Corma, A. J. Catal. 2010, 276, 134. doi: 10.1016/j.jcat.2010.09.010

    13. [13]

      (13) Tanabe, K. K.; Cohen, S. M. Inorg. Chem. 2010, 49, 6766. doi: 10.1021/ic101125m

    14. [14]

      (14) Aguado, S.; Canivet, J.; Schuurman, Y.; Farrusseng, D. J. Catal.2011, 248, 207.

    15. [15]

      (15) Schaate, A.; Roy, P.; dt, A.; Lippke, J.;Waltz, F.;Wiebcke,M.; Behrens, P. Chem. Eur. J. 2011, 17, 6643. doi: 10.1002/chem.v17.24

    16. [16]

      (16) Phan, N.; Le, K.; Phan, T. D. Appl. Catal. A-Gen. 2010, 382,246. doi: 10.1016/j.apcata.2010.04.053

    17. [17]

      (17) Gao, S.; Zhao, N.; Shu, M.; Che, S. Appl. Catal. A-Gen. 2010,388, 196. doi: 10.1016/j.apcata.2010.08.045

    18. [18]

      (18) Ishida, T.; Nagaoka, M.; Akita, T.; Haruta, M. Chem. Eur. J.2008, 14, 8456. doi: 10.1002/chem.v14:28

    19. [19]

      (19) Liu, H. L.; Liu, Y. L.; Li, Y.W.; Tang, Z. Y.; Jiang, H. F. J. Phys. Chem. C 2010, 114, 13362.

    20. [20]

      (20) Xamena, F.; Abad, A.; Corma, A.; Garcia, H. J. Catal. 2007,250, 294. doi: 10.1016/j.jcat.2007.06.004

    21. [21]

      (21) Dang, T. T.; Zhu, Y.; Ghosh, S. C.; Chen, A.; Chai, C.; Seayad,A. M. Chem. Commun. 2012, 48, 1805. doi: 10.1039/c2cc16808a

    22. [22]

      (22) Huang, Y.; Lin, Z.; Cao, R. Chem. Eur. J. 2011, 17, 12706. doi: 10.1002/chem.201101705

    23. [23]

      (23) Zhang, M.; Guan, J.; Zhang, B.; Su, D.;Williams, C. T.; Liang,C. Catal. Lett. 2012, 42, 313.

    24. [24]

      (24) esten, M. G.; Alcaniz, J.; Fernandez, E. V.; Gupta, K.;Stavitski, E.; Bekkum, H.; Gascon, J.; Kapteijn, F. J. Catal.2011, 281, 177. doi: 10.1016/j.jcat.2011.04.015

    25. [25]

      (25) Zhou, Y. X.; Liang, S. G.; Song, J. L.;Wu, T. B.; Hu, S. Q.; Liu,H. Z.; Jiang, T.; Han, B. X. Acta Phys. -Chim. Sin. 2010, 26,939. [周印羲, 梁曙光, 宋金良, 吴天斌, 胡素琴, 刘会贞,姜涛, 韩布兴. 物理化学学报, 2010, 26, 939.] doi: 10.3866/PKU.WHXB20100406

    26. [26]

      (26) Jiang, H.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q.J. Am. Chem. Soc. 2009, 131, 11302. doi: 10.1021/ja9047653

    27. [27]

      (27) El-Shall, M.; Abdelsayed, V.; Khder, A. S.; Hassan, H.; El-Kaderi, H.; Reich, T. J. Mater. Chem. 2009, 19, 7625. doi: 10.1039/b912012b

    28. [28]

      (28) Ye, J.; Liu, C. Chem. Commun. 2011, 47, 2167. doi: 10.1039/c0cc04944a

    29. [29]

      (29) Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.;Henry, M.; Bataille, T.; Ferey, G. Chem. Eur. J. 2004, 10, 1373.

    30. [30]

      (30) Chan-Thaw, C. A.; Katekomol, P. D.; Thomas, A. L. Nano Lett.2010, 10, 537. doi: 10.1021/nl904082k

    31. [31]

      (31) Zhou, Y.; Xiang, Z. H.; Cao, D. P.; Liu, C. J. Chem. Commun.2013, 49, 5633. doi: 10.1039/c3cc00287j


  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    3. [3]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    10. [10]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    11. [11]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    18. [18]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(941)
  • Abstract views(1141)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return