Citation: HAN Shuai-Yuan, YUE Bao-Hua, YAN Liu-Ming. Research Progress in the Development of High-Temperature Proton Exchange Membranes Based on Phosphonic Acid Group[J]. Acta Physico-Chimica Sinica, ;2014, 30(1): 8-21. doi: 10.3866/PKU.WHXB201311151
-
Increasing the operating temperature of proton exchange membrane fuel cells (PEMFCs) can not only increase their electrocatalytic activities and their tolerance to impurities, such as CO, in feed gas, and decrease the precious metal loading on the electrocatalysts, but also simplify the hydrothermal management system and increase the overall energy conversion efficiency. The core obstacle to realize high-temperature PEMFCs is the development of high-temperature proton exchange membranes (HTPEMs), so this has attracted much research interest. Among the many types of HT-PEMs, HT-PEMs based on polymeric phosphonic acid are one of the best candidates, and thus is an essential research field. In this article, we review recent research progress in HT-PEMs based on polymeric phosphonic acid, discuss the proton transport mechanism, and compare the proton conductivities, physical and chemical stabilities, and mechanical properties of pristine polymeric phosphonic acid, polymers grafted with phosphonic acid, copolymers consisting of phosphonic acid and heterocyclic bases, and composite membranes based on phosphonic acid and other materials. We finally summarize and give an overview of some of the development trends in HT-PEMs based on polymeric phosphonic acid.
-
-
[1]
(1) Winter, M.; Brodd, R. J. Chem. Rev. 2005, 105 (3), 1021. doi: 10.1021/cr040110e
-
[2]
(2) Wang, Y. J.;Wilkinson, D. P.; Zhang, J. Chem. Rev. 2011, 111 (12), 7625. doi: 10.1021/cr100060r
-
[3]
(3) Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y. S.; Mukundan, R.;Garland, N.; Myers, D.;Wilson, M.; Garzon, F.;Wood, D.;Zelenay, P.; More, K.; Stroh, K.; Zawodzinski, T.; Boncella, J.;McGrath, J. E.; Inaba, M.; Miyatake, K.; Hori, M.; Ota, K.;Ogumi, Z.; Miyata, S.; Nishikata, A.; Siroma, Z.; Uchimoto, Y.;Yasuda, K.; Kimijima, K. I.; Iwashita, N. Chem. Rev. 2007, 107 (10), 3904. doi: 10.1021/cr050182l
-
[4]
(4) Zhang, L.; Kim, J.; Chen, H. M.; Nan, F.; Dudeck, K.; Liu, R.S.; Botton, G. A.; Zhang, J. J. Power Sources 2011, 196 (22),9117. doi: 10.1016/j.jpowsour.2011.05.020
-
[5]
(5) Hosseinzadeh, E.; Rokni, M.; Rabbani, A.; Mortensen, H. H.Appl. Energy 2013, 104, 434.
-
[6]
(6) Yi, B. L. Fuel Cell-Principle ?Technology ?Application;Chemical Industry Press: Beijing, 2003; pp 251-274. [衣宝廉. 燃料电池-原理、技术、应用. 北京: 化学工业出版社, 2003:251-274.]
-
[7]
(7) Adjemian, K. T.; Lee, S. J.; Srinivasan, S.; Benziger, J.;Bocarsly, A. B. J. Electrochem. Soc. 2002, 149 (3), A256.
-
[8]
(8) Xing, D. M.; Du, X. Z.; Yu, J. R.; Han, M.; Yi, B. L. Chin. J. Power Sources 2001, Z1, 171. [邢丹敏, 杜学忠, 于景荣, 韩明, 衣宝廉. 电源技术, 2001, Z1, 171.]
-
[9]
(9) Hou, H.; Di Vona, M. L.; Knauth, P. ChemSusChem 2011, 4 (11), 1526. doi: 10.1002/cssc.v4.11
-
[10]
(10) Sone, Y.; Ekdunge, P.; Simonsson, D. J. Electrochem. Soc. 1996,143 (4), 1254. doi: 10.1149/1.1836625
-
[11]
(11) Jung, D. H.; Cho, S. Y.; Peck, D. H.; Shin, D. R.; Kim, J. S.J. Power Sources 2003, 118 (1-2), 205.
-
[12]
(12) Mollá, S.; Compañ, V.; Luis Lafuente, S.; Prats, J. Fuel Cells2011, 11 (6), 897. doi: 10.1002/fuce.v11.6
-
[13]
(13) Wang, J.; Zhao, Y.; Hou,W.; Geng, J.; Xiao, L.;Wu, H.; Jiang,Z. J. Power Sources 2010, 195 (4), 1015. doi: 10.1016/j.jpowsour.2009.08.053
-
[14]
(14) Bose, S.; Kuila, T.; Nguyen, T. X. H.; Kim, N. H.; Lau, K. T.;Lee, J. H. Prog. Polym. Sci. 2011, 36 (6), 813. doi: 10.1016/j.progpolymsci.2011.01.003
-
[15]
(15) Li, Q.; Jensen, J. O.; Savinell, R. F.; Bjerrum, N. J. Prog. Polym. Sci. 2009, 34 (5), 449-477. doi: 10.1016/j.progpolymsci.2008.12.003
-
[16]
(16) Tripathi, B. P.; Shahi, V. K. Prog. Polym. Sci. 2011, 36 (7),945. doi: 10.1016/j.progpolymsci.2010.12.005
-
[17]
(17) Park, C. H.; Lee, C. H.; Guiver, M. D.; Lee, Y. M. Prog. Polym. Sci. 2011, 36 (11), 1443. doi: 10.1016/j.progpolymsci.2011.06.001
-
[18]
(18) Pu, H. T.; Lou, L. D.; Guan, Y. S.; Chang, Z. H.;Wan, D. C.J. Membr. Sci. 2012, 415, 496.
-
[19]
(19) Kreuer, K. D.; Fuchs, A.; Ise, M.; Spaeth, M.; Maier, J.Electrochim. Acta 1998, 43 (10-11), 1281. doi: 10.1016/S0013-4686(97)10031-7
-
[20]
(20) Zhou, Z.; Li, S.; Zhang, Y.; Liu, M.; Li,W. J. Am. Chem. Soc.2005, 127 (31), 10824. doi: 10.1021/ja052280u
-
[21]
(21) Li, S.; Zhou, Z.; Zhang, Y.; Liu, M.; Li,W. Chem. Mater. 2005,17 (24), 5884. doi: 10.1021/cm0515092
-
[22]
(22) Pu, H.; Qin, Y.; Tang, L.; Teng, X.; Chang, Z. Electrochim. Acta2009, 54 (9), 2603. doi: 10.1016/j.electacta.2008.10.057
-
[23]
(23) Wang, J.; Yue, X.; Zhang, Z.; Yang, Z.; Li, Y.; Zhang, H.; Yang,X.;Wu, H.; Jiang, Z. Adv. Funct. Mater. 2012, 22 (21), 4539.doi: 10.1002/adfm.v22.21
-
[24]
(24) Haile, S. M.; Chisholm, C. R.; Sasaki, K.; Boysen, D. A.; Uda,T. Faraday Discuss. 2007, 134, 17. doi: 10.1039/b604311a
-
[25]
(25) Boysen, D. A.; Uda, T.; Chisholm, C. R. I.; Haile, S. M. Science2004, 303 (5654), 68. doi: 10.1126/science.1090920
-
[26]
(26) Haile, S. M.; Boysen, D. A.; Chisholm, C. R. I.; Merle, R. B.Nature 2001, 410 (6831), 910. doi: 10.1038/35073536
-
[27]
(27) Boysen, D. A.; Chisholm, C. R. I.; Haile, S. M.; Narayanan, S.R. J. Electrochem. Soc. 2000, 147 (10), 3610. doi: 10.1149/1.1393947
-
[28]
(28) Acar, O.; Sen, U.; Bozkurt, A.; Ata, A. Int. J. Hydrog. Energy2009, 34 (6), 2724. doi: 10.1016/j.ijhydene.2009.01.073
-
[29]
(29) Bozkurt, A.; Meyer,W. H. Solid State Ionics 2001, 138 (3-4),259. doi: 10.1016/S0167-2738(00)00779-7
-
[30]
(30) Lassègues, J. C.; Grondin, J.; Hernandez, M.; Marée, B. Solid State Ionics 2001, 145 (1-4), 37. doi: 10.1016/S0167-2738(01)00909-2
-
[31]
(31) Schuster, M.; Rager, T.; Noda, A.; Kreuer, K. D.; Maier, J. Fuel Cells 2005, 5 (3), 355.
-
[32]
(32) Aili, D.; Hansen, M. K.; Pan, C.; Li, Q.; Christensen, E.; Jensen,J. O.; Bjerrum, N. J. Int. J. Hydrog. Energy 2011, 36 (12),6985. doi: 10.1016/j.ijhydene.2011.03.058
-
[33]
(33) He, R. H.; Li, Q. F.; Jensen, J. O.; Bjerrum, N. J. J. Polym. Sci., Part A: Polym. Chem. 2007, 45 (14), 2989.
-
[34]
(34) He, R.; Li, Q.; Bach, A.; Jensen, J. O.; Bjerrum, N. J. J. Membr. Sci. 2006, 277 (1-2), 38. doi: 10.1016/j.memsci.2005.10.005
-
[35]
(35) He, R.; Li, Q.; Xiao, G.; Bjerrum, N. J. J. Membr. Sci. 2003, 226 (1-2), 169. doi: 10.1016/j.memsci.2003.09.002
-
[36]
(36) Sevil, F.; Bozkurt, A. J. Phys. Chem. Solids 2004, 65 (10), 1659.doi: 10.1016/j.jpcs.2004.04.001
-
[37]
(37) Yamada, M.; Honma, I. Polymer 2005, 46 (9), 2986. doi: 10.1016/j.polymer.2005.02.056
-
[38]
(38) Aslan, A.; Bozkurt, A. J. Power Sources 2009, 191 (2), 442. doi: 10.1016/j.jpowsour.2009.02.040
-
[39]
(39) Bock, T.; Möhwald, H.; Mülhaupt, R. Macromol. Chem. Phys.2007, 208 (13), 1324.
-
[40]
(40) Rusanov, A.; Kostoglodov, P.; Abadie, M.; Voytekunas, V.;Likhachev, D. Proton-conducting Polymers and MembranesCarrying Phosphonic Acid Groups. In Fuel Cells II; Scherer, G.G. Eds.; Springer: Heidelberg, 2008; pp 125-155.
-
[41]
(41) Lafitte, B.; Jannasch, P. On the Prospects for PhosphonatedPolymers as Proton-exchange Fuel Cell Membranes. InAdvances in Fuel Cells; Zhao, T. S. H. Eds.; Elsevier Science:Amsterdam, 2007; pp 119-185.
-
[42]
(42) Steininger, H.; Schuster, M.; Kreuer, K. D.; Kaltbeitzel, A.;Bin l, B.; Meyer,W. H.; Schauff, S.; Brunklaus, G.; Maier, J.;Spiess, H.W. Phys. Chem. Chem. Phys. 2007, 9 (15), 1764. doi: 10.1039/b618686f
-
[43]
(43) Yan, L.; Zhu, S.; Ji, X.; Lu,W. J. Phys. Chem. B 2007, 111 (23),6357. doi: 10.1021/jp071005m
-
[44]
(44) Freedman, L. D.; Doak, G. O. Chem. Rev. 1957, 57 (3), 479.doi: 10.1021/cr50015a003
-
[45]
(45) Jaffé, H. H.; Freedman, L. D.; Doak, G. O. J. Am. Chem. Soc.1954, 76 (6), 1548. doi: 10.1021/ja01635a022
-
[46]
(46) Jaffé, H. H.; Freedman, L. D.; Doak, G. O. J. Am. Chem. Soc.1953, 75 (9), 2209. doi: 10.1021/ja01105a054
-
[47]
(47) Zundel, G. Recent Developments in Theory and Experiments.II. Structure and Spectroscopy. In The Hydrogen Bond;Schuster, P.; Zundel, G.; Sandorfy, C. Eds.; North-Holland Pub.Co.: Amsterdam, 1976; pp 683-766.
-
[48]
(48) Eigen, M. Angew. Chem. Int. Edit. 1964, 3 (1), 1.
-
[49]
(49) Wicke, E.; Eigen, M.; Ackermann, T. Z. Phys. Chem. 1954, 1,340. doi: 10.1524/zpch.1954.1.5_6.340
-
[50]
(50) Marx, D. ChemPhysChem 2006, 7 (9), 1848.
-
[51]
(51) Agmon, N. Chem. Phys. Lett. 1995, 244 (5-6), 456. doi: 10.1016/0009-2614(95)00905-J
-
[52]
(52) Yan, L.; Feng, Q.; Xie, L.; Zhang, D. Solid State Ionics 2011,190 (1), 8. doi: 10.1016/j.ssi.2011.03.010
-
[53]
(53) Yue, B.; Yan, L.; Han, S.; Xie, L. J. Phys. Chem. B 2013, 117 (26), 7941. doi: 10.1021/jp404684e
-
[54]
(54) Paddison, S. J.; Kreuer, K. D.; Maier, J. Phys. Chem. Chem. Phys. 2006, 8 (39), 4530. doi: 10.1039/b611221h
-
[55]
(55) Vilciauskas, L.; Paddison, S. J.; Kreuer, K. D. J. Phys. Chem. A2009, 113 (32), 9193. doi: 10.1021/jp903005r
-
[56]
(56) Wang, C.; Paddison, S. J. Phys. Chem. Chem. Phys. 2010, 12 (4), 970. doi: 10.1039/b917903h
-
[57]
(57) Morrison, C. A.; Siddick, M. M.; Camp, P. J.;Wilson, C. C.J. Am. Chem. Soc. 2005, 127 (11), 4042. doi: 10.1021/ja043327z
-
[58]
(58) Heggen, B.; Roy, S.; Müller-Plathe, F. J. Phys. Chem. C 2008,112 (36), 14209. doi: 10.1021/jp803589w
-
[59]
(59) Pereira, R. P.; Felisberti, M. I.; Rocco, A. M. Polymer 2006, 47 (4), 1414. doi: 10.1016/j.polymer.2005.12.034
-
[60]
(60) Joswig, J. O.; Hazebroucq, S.; Seifert, G. J. Mol. Struct. Theochem 2007, 816 (1-3), 119. doi: 10.1016/j.theochem.2007.04.008
-
[61]
(61) Roy, S.; Ataol, T. M.; Müller-Plathe, F. J. Phys. Chem. B 2008,112 (25), 7403. doi: 10.1021/jp0757107
-
[62]
(62) Idupulapati, N.; Devanathan, R.; Dupuis, M. J. Phys. Chem. B2011, 115 (12), 2959. doi: 10.1021/jp111972h
-
[63]
(63) Yan, L.; Xie, L. Molecular Dynamics Simulations of ProtonTransport in Proton Exchange Membranes Based on Acid-baseComplexes. In Molecular Interaction; Meghea, A. Eds.; InTech:Rijeka, Croatia, 2012; pp 335-360.
-
[64]
(64) Lee, Y. J.; Bin l, B.; Murakhtina, T.; Sebastiani, D.; Meyer,W.H.;Wegner, G.; Spiess, H.W. J. Phys. Chem. B 2007, 111 (33),9711. doi: 10.1021/jp072112j
-
[65]
(65) Brunklaus, G.; Schauff, S.; Markova, D.; Klapper, M.; Müllen,K.; Spiess, H.W. J. Phys.Chem. B 2009, 113 (19), 6674. doi: 10.1021/jp901714f
-
[66]
(66) Blanchard, J.W.; Groy, T. L.; Yarger, J. L.; Holland, G. P.J. Phys. Chem. C 2012, 116 (35), 18824. doi: 10.1021/jp305229s
-
[67]
(67) Akbey, U.; Graf, R.; Chu, P. P.; Spiess, H.W. Aust. J. Chem.2009, 62 (8), 848. doi: 10.1071/CH09066
-
[68]
(68) Bingöl, B.; Meyer,W. H.;Wagner, M.;Wegner, G. Macromol. Rapid Commun. 2006, 27 (20), 1719.
-
[69]
(69) Bingöl, B.; Strandberg, C.; Szabo, A.;Wegner, G.Macromolecules 2008, 41 (8), 2785. doi: 10.1021/ma702807a
-
[70]
(70) Millaruelo, M.; Steinert, V.; Komber, H.; Klopsch, R.; Voit, B.Macromol. Chem. Phys. 2008, 209(4), 366.
-
[71]
(71) Komber, H.; Steinert, V.; Voit, B. Macromolecules 2008, 41 (6),2119. doi: 10.1021/ma702662q
-
[72]
(72) Wagner, T.; Manhart, A.; Deniz, N.; Kaltbeitzel, A.;Wagner, M.;Brunklaus, G.; Meyer,W. H. Macromol. Chem. Phys. 2009, 210 (22), 1903. doi: 10.1002/macp.v210:22
-
[73]
(73) Kawauchi, T.; Ohara, M.; Udo, M.; Kawauchi, M.; Takeichi, T.J. Polym. Sci. Part A: Polym. Chem. 2010, 48 (8), 1677. doi: 10.1002/pola.v48:8
-
[74]
(74) David, G.; Boutevin, B.; Seabrook, S.; Destarac, M.;Woodward, G.; Otter, G. Macromol. Chem. Phys. 2007, 208 (6),635.
-
[75]
(75) David, G.; Boyer, C.; Tayouo, R.; Seabrook, S.; Ameduri, B.;Boutevin, B.;Woodward, G.; Destarac, M. Macromol. Chem. Phys. 2008, 209 (1), 75.
-
[76]
(76) Blidi, I.; Geagea, R.; Coutelier, O.; Mazieres, S.; Violleau, F.;Destarac, M. Polym. Chem. 2012, 3 (3), 609. doi: 10.1039/c2py00541g
-
[77]
(77) Canniccioni, B.; Monge, S.; David, G.; Robin, J. J. Polym. Chem. 2013, 4 (13), 3676. doi: 10.1039/c3py00426k
-
[78]
(78) Kavlak, S.; Güner, A.; Rzaev, Z. M. O. Polymer 2010, 51 (10),2125. doi: 10.1016/j.polymer.2010.03.016
-
[79]
(79) Najafi, V.; Kabiri, K.; Ziaee, F.; Omidian, H.; Zohuriaan-Mehr,M. J.; Bouhendi, H.; Farhadnejad, H. J. Polym. Res. 2012, 19 (6), 9866. doi: 10.1007/s10965-012-9866-9
-
[80]
(80) Bingöl, B.; Hart-Smith, G.; Barner-Kowollik, C.;Wegner, G.Macromolecules 2008, 41 (5), 1634. doi: 10.1021/ma702225k
-
[81]
(81) Levin, Y. A.; Fridman, G. B.; Gurskaya, V. S.; Gazizova, L. K.;Shulyndin, S. V.; Ivanov, B. Y. Polym. Sci. U.S.S.R. 1982, 24 (3), 667. doi: 10.1016/0032-3950(82)90058-2
-
[82]
(82) Seemann, U. B.; Dengler, J. E.; Rieger, B. Angew. Chem. Int. Ed. 2010, 49 (20), 3489-3491. doi: 10.1002/anie.201000804
-
[83]
(83) Salzinger, S.; Rieger, B. Macromol. Rapid Commun. 2012, 33 (16), 1327. doi: 10.1002/marc.201200278
-
[84]
(84) Salzinger, S.; Soller, B. S.; Plikhta, A.; Seemann, U. B.;Herdtweck, E.; Rieger, B. J. Am. Chem. Soc. 2013, 135 (35),13030. doi: 10.1021/ja404457f.
-
[85]
(85) Kotov, S. V.; Pedersen, S. D.; Qiu,W.; Qiu, Z. M.; Burton, D. J.J. Fluorine Chem. 1997, 82 (1), 13. doi: 10.1016/S0022-1139(96)03534-8
-
[86]
(86) Yamabe, M.; Akiyama, K.; Akatsuka, Y.; Kato, M. Eur. Polym. J. 2000, 36 (5), 1035. doi: 10.1016/S0014-3057(99)00158-5
-
[87]
(87) Stone, C.; Daynard, T. S.; Hu, L. Q.; Mah, C.; Steck, A. E.J. New Mat. Electrochem. Systems 2000, 3, 43.
-
[88]
(88) Herath, M. B.; Creager, S. E.; Kitay rodskiy, A.; DesMarteau,D. D. J. Phys. Chem. B 2010, 114 (46), 14972. doi: 10.1021/jp107190q
-
[89]
(89) Herath, M. B.; Creager, S. E.; Kitay rodskiy, A.; DesMarteau,D. D. ChemPhysChem 2010, 11 (13), 2871. doi: 10.1002/cphc.201000184
-
[90]
(90) Wang, H. G.; Mao, S. L.; Gao, J. T. Adhesion in China 2000, 21 (3), 29. [王宏刚, 毛绍兰, 高金堂. 粘接, 2000, 21 (3), 29.]
-
[91]
(91) Steininger, H.; Schuster, M.; Kreuer, K. D.; Maier, J. Solid State Ionics 2006, 177 (26-32), 2457. doi: 10.1016/j.ssi.2006.04.005
-
[92]
(92) Kato, M.; Katayama, S.; Sakamoto,W.; Yo , T. Electrochim. Acta 2007, 52 (19), 5924. doi: 10.1016/j.electacta.2007.03.031
-
[93]
(93) Umeda, J.; Moriya, M.; Sakamoto,W.; Yo , T. Electrochim. Acta 2009, 55 (1), 298. doi: 10.1016/j.electacta.2009.08.054
-
[94]
(94) Umeda, J.; Suzuki, M.; Kato, M.; Moriya, M.; Sakamoto,W.;Yo , T. J. Power Sources 2010, 195 (18), 5882. doi: 10.1016/j.jpowsour.2009.12.078
-
[95]
(95) Jin, Y. G.; Qiao, S. Z.; Xu, Z. P.; Yan, Z.; Huang, Y.; Diniz daCosta, J. C.; Lu, G. Q. J. Mater. Chem. 2009, 19 (16), 2363. doi: 10.1039/b819379g
-
[96]
(96) Jin, Y. G.; Qiao, S. Z.; Xu, Z. P.; Diniz da Costa, J. C.; Lu, G. Q.J. Phys. Chem. C 2009, 113 (8), 3157. doi: 10.1021/jp810112c
-
[97]
(97) Sel, O.; Azais, T.; Maréchal, M.; Gébel, G.; Laberty-Robert, C.;Sanchez, C. Chem. Asian J. 2011, 6 (11), 2992. doi: 10.1002/asia.v6.11
-
[98]
(98) Shen, C. H.; Guo, Z. H.; Chen, C.; Gao, S. J. J. Appl. Polym. Sci. 2012, 126 (3), 954. doi: 10.1002/app.v126.3
-
[99]
(99) Labalme, E.; David, G.; Buvat, P.; Bigarre, J.; Boucheteau, T. J. Polym. Sci., Part A: Polym. Chem. 2012, 50 (7), 1308. doi: 10.1002/pola.v50.7
-
[100]
(100) Chen, C.; Shen, C. H.; Kong, G. J.; Gao, S. J. Mater. Chem. Phys. 2013, 140 (1), 24. doi: 10.1016/j.matchemphys.2013.02.017
-
[101]
(101) Kim, S. H.; Park, Y. C.; Jung, G. H.; Cho, C. G. Macromol. Res. 2007, 15 (6), 587. doi: 10.1007/BF03218835
-
[102]
(102) Cho, C. G.; Kim, S. H.; Park, Y. C.; Kim, H.; Park, J.W. J. Membr. Sci. 2008, 308 (1-2), 96. doi: 10.1016/j.memsci.2007.09.052
-
[103]
(103) Markova, D.; Kumar, A.; Klapper, M.; Muellen, K. Polymer2009, 50 (15), 3411. doi: 10.1016/j.polymer.2009.06.011
-
[104]
(104) Roy, S.; Markova, D.; Kumar, A.; Klapper, M.; Muller-Plathe,F. Macromolecules 2009, 42 (3), 841. doi: 10.1021/ma802263t
-
[105]
(105) Markova, D.; Opper, K. L.;Wagner, M.; Klapper, M.;Wagener, K. B.; Mullen, K. Polym. Chem. 2013, 4 (5), 1351.doi: 10.1039/c2py20886e
-
[106]
(106) Kumar, A.; Pisula,W.; Markova, D.; Klapper, M.; Mullen, K.Macromol. Chem. Phys. 2012, 213 (5), 489. doi: 10.1002/macp.201100429
-
[107]
(107) Kaltbeitzel, A.; Schauff, S.; Steininger, H.; Bingöl, B.;Brunklaus, G.; Meyer,W. H.; Spiess, H.W. Solid State Ionics2007, 178 (7-10), 469. doi: 10.1016/j.ssi.2007.02.007
-
[108]
(108) Perrin, R.; Elomaa, M.; Jannasch, P. Macromolecules 2009, 42 (14), 5146. doi: 10.1021/ma900703j
-
[109]
(109) Schlichting, G. J.; Horan, J. L.; Jessop, J. D.; Nelson, S. E.;Seifert, S.; Yang, Y.; Herring, A. M. Macromolecules 2012, 45 (9), 3874. doi: 10.1021/ma300196y
-
[110]
(110) Çelik, S.; Bozkurt, A. J. Polym. Res. 2012, 20 (1), 1.
-
[111]
(111) Çelik, S. Ü.; Bozkurt, A. Macromol. Chem. Phys. 2013, 214 (4), 486. doi: 10.1002/macp.v214.4
-
[112]
(112) Çelik, S.; Bozkurt, A. J. Inorg. Organomet. Polym. Mater.2013, 23 (4), 846. doi: 10.1007/s10904-013-9851-8
-
[113]
(113) Higashihara, T.; Fukuzaki, N.; Tamura, Y.; Rho, Y.;Nakabayashi, K.; Nakazawa, S.; Murata, S.; Ree, M.; Ueda,M. J. Mater. Chem. A 2013, 1 (4), 1457. doi: 10.1039/c2ta00537a
-
[114]
(114) Tamura, Y.; Sheng, L.; Nakazawa, S.; Higashihara, T.; Ueda,M. J. Polym. Sci., Part A: Polym. Chem. 2012, 50 (20), 4334.doi: 10.1002/pola.v50.20
-
[115]
(115) Lee, S. I.; Song, M.; Yoon, K. H.; Peng, H.; Page, K. A.; Soles,C. L.; Yoon, D. Chem. Mater. 2012, 24 (1), 115. doi: 10.1021/cm202064x
-
[116]
(116) Meng, Y. Z.; Tjong, S. C.; Hay, A. S.;Wang, S. J. Eur. Polym. J. 2003, 39 (3), 627. doi: 10.1016/S0014-3057(02)00238-0
-
[117]
(117) Meng, Y. Z.; Tjong, S. C.; Hay, A. S.;Wang, S. J. J. Polym. Sci. Part A: Polym. Chem. 2001, 39 (19), 3218.
-
[118]
(118) Hirao, T.; Masunaga, T.; Yamada, N.; Ohshiro, Y.; Agawa, T.Bull. Chem. Soc. Jpn. 1982, 55 (3), 909. doi: 10.1246/bcsj.55.909
-
[119]
(119) Subianto, S.; Choudhury, N. R.; Dutta, N. K. J. Polym. Sci. Part A: Polym. Chem. 2008, 46 (16), 5431. doi: 10.1002/pola.v46:16
-
[120]
(120) Ingratta, M.; Elomaa, M.; Jannasch, P. Polym. Chem. 2010, 1 (5), 739. doi: 10.1039/b9py00390h
-
[121]
(121) Miyatake, K.; Hay, A. S. J. Polym. Sci., Part A: Polym. Chem.2001, 39 (21), 3770.
-
[122]
(122) Belabassi, Y.; Alzghari, S.; Montchamp, J. L. J. Organomet. Chem. 2008, 693 (19), 3171. doi: 10.1016/j.jorganchem.2008.07.020
-
[123]
(123) Jakoby, K.; Peinemann, K. V.; Nunes, S. P. Macromol. Chem. Phys. 2003, 204 (1), 61.
-
[124]
(124) Lafitte, B.; Jannasch, P. J. Polym. Sci. Part A: Polym. Chem.2005, 43 (2), 273.
-
[125]
(125) Lafitte, B.; Jannasch, P. J. Polym. Sci. Part A: Polym. Chem.2007, 45 (2), 269.
-
[126]
(126) Parvole, J.; Jannasch, P. J. Mater. Chem. 2008, 18 (45),5547. doi: 10.1039/b811755a
-
[127]
(127) Parvole, J.; Jannasch, P. Macromolecules 2008, 41 (11),3893. doi: 10.1021/ma800042m
-
[128]
(128) Schmidt-Naake, G.; Böhme, M.; Cabrera, A. Chem. Eng. Technol. 2005, 28 (6), 720.
-
[129]
(129) Tayouo, R.; David, G.; Améduri, B. Eur. Polym. J. 2010, 46 (5), 1111. doi: 10.1016/j.eurpolymj.2010.01.011
-
[130]
(130) Tayouo, R.; David, G.; Améduri, B.; Rozière, J.; Roualdès, S.Macromolecules 2010, 43 (12), 5269. doi: 10.1021/ma100703k
-
[131]
(131) Binsu, V. V.; Nagarale, R. K.; Shahi, V. K. J. Mater. Chem.2005, 15 (45), 4823. doi: 10.1039/b511274e
-
[132]
(132) Ghil, L. J.; Kim, C. K.; Rhee, H.W. Curr. Appl. Phys. 2009, 9 (2, Supplement 1), E56.
-
[133]
(133) Kucuk, A. C.; Matsui, J.; Miyashita, T. J. Mater. Chem. 2012,22 (9), 3853. doi: 10.1039/c2jm15779a
-
[134]
(134) Allcock, H. R.; Hofmann, M. A.; Ambler, C. M.; Lvov, S. N.;Zhou, X. Y.; Chalkova, E.;Weston, J. J. Membr. Sci. 2002, 201 (1-2), 47. doi: 10.1016/S0376-7388(01)00702-5
-
[135]
(135) Hac?veliog? lu, F.; Okutan, E.; Çelik, S. Ü.; Ye ilot, S.; Bozkurt,A.; K?l?ç, A. Polymer 2012, 53 (17), 3659. doi: 10.1016/j.polymer.2012.06.033
-
[136]
(136) Alidag? ?, H. A.; G?rg?ç, Ö. M.; Zorlu, Y.; Hac?veliog? lu, F.; Çelik,S. Ü.; Bozkurt, A.; K?l?ç, A.; Ye ilot, S. Polymer 2013, 54 (9),2250. doi: 10.1016/j.polymer.2013.03.016
-
[137]
(137) Itoh, T.; Hirai, K.; Tamura, M.; Uno, T.; Kubo, M.; Aihara, Y.J. Power Sources 2008, 178 (2), 627. doi: 10.1016/j.jpowsour.2007.08.030
-
[138]
(138) Aslan, A.; Çelik, S. Ü.; Bozkurt, A. Solid State Ionics 2009,180 (23-25), 1240. doi: 10.1016/j.ssi.2009.07.003
-
[139]
(139) Pupkevich, V.; Glibin, V.; Karamanev, D. J. Power Sources2013, 228, 300. doi: 10.1016/j.jpowsour.2012.11.080
-
[140]
(140) Park, C. H.; Nam, S. Y.; Lee, Y. M. J. Appl. Polym. Sci. 1999,74 (1), 83.
-
[141]
(141) Erdemi, H.; Bozkurt, A. Eur. Polym. J. 2004, 40 (8), 1925. doi: 10.1016/j.eurpolymj.2004.04.001
-
[142]
(142) Bozkurt, A.; Meyer,W. H.; Gutmann, J.;Wegner, G. Solid State Ionics 2003, 164 (3-4), 169. doi: 10.1016/j.ssi.2003.09.005
-
[143]
(143) Çelik, S. U.; Akbey, U.; Graf, R.; Bozkurt, A.; Spiess, H.W.Phys. Chem. Chem. Phys. 2008, 10 (39), 6058. doi: 10.1039/b807659f
-
[144]
(144) Jiang, F.; Kaltbeitzel, A.; Fassbender, B.; Brunklaus, G.; Pu,H.;Wolfgang, H. M.; Spiess, H.W.;Wegner, G. Macromol. Chem. Phys. 2008, 209 (24), 2494. doi: 10.1002/macp.v209:24
-
[145]
(145) Pu, H.; Qin, Y.;Wan, D.; Yang, Z. Macromolecules 2009, 42 (8), 3000. doi: 10.1021/ma900054t
-
[146]
(146) Pu, H. T.; Luo, H. C.;Wan, D. C. J. Polym. Sci. Part A: Polym. Chem. 2013, 51 (16), 3486. doi: 10.1002/pola.v51.16
-
[147]
(147) Sevil, F.; Bozkurt, A. Turk. J. Chem. 2005, 29(4), 377.
-
[148]
(148) Göktepe, F.; Çelik, S. Ü.; Bozkurt, A. J. Non-Cryst. Solids2008, 354 (30), 3637. doi: 10.1016/j.jnoncrysol.2008.03.023
-
[149]
(149) Aslan, A.; Bozkurt, A. Solid State Ionics 2013, 239, 21.
-
[150]
(150) Kufac?, M.; Bozkurt, A.; Tülü, M. Solid State Ionics 2006, 177 (11-12), 1003. doi: 10.1016/j.ssi.2006.03.026
-
[151]
(151) Jiang, F.; Zhu, H.; Graf, R.; Meyer,W. H.; Spiess, H.W.;Wegner, G. Macromolecules 2010, 43 (8), 3876. doi: 10.1021/ma100168g
-
[152]
(152) Aslan, A.; Bozkurt, A. J. Power Sources 2012, 217, 158. doi: 10.1016/j.jpowsour.2012.05.011
-
[153]
(153) Aslan, A.; lcuk, K.; Bozkurt, A. J. Polym. Res. 2012, 19 (12), 22. doi: 10.1007/s10965-012-0022-3
-
[154]
(154) Durmus, Z.; Erdemi, H.; Aslan, A.; Toprak, M. S.; Sozeri, H.;Baykal, A. Polyhedron 2011, 30 (2), 419. doi: 10.1016/j.poly.2010.11.011
-
[155]
(155) Lou, L.; Pu, H. Int. J. Hydrog. Energy 2011, 36 (4), 3123.doi: 10.1016/j.ijhydene.2010.11.105
-
[156]
(156) Joseph, J.; Tseng, C. Y.; Hwang, B. J. J. Power Sources 2011,196 (18), 7363. doi: 10.1016/j.jpowsour.2010.08.090
-
[157]
(157) Nie, L. L.;Wang, J. T.; Xu, T.; Dong, H.;Wu, H.; Jiang, Z. Y.J. Power Sources 2012, 213, 1. doi: 10.1016/j.jpowsour.2012.03.108
-
[158]
(158) Nie, L. L.; Dong, H.; Han, X.; He, G.W.;Wu, H.; Jiang, Z. Y.J. Power Sources 2013, 240, 258. doi: 10.1016/j.jpowsour.2013.04.009
-
[1]
-
-
[1]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[2]
Yukun Chang , Haoqin Huang , Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095
-
[3]
Xiao Liu , Guangzhong Cao , Mingli Gao , Hong Wu , Hongyan Feng , Chenxiao Jiang , Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043
-
[4]
Shuyu Liu , Xiaomin Sun , Bohan Song , Gaofeng Zeng , Bingbing Du , Chongshen Guo , Cong Wang , Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113
-
[5]
Yuan Zheng , Quan Lan , Zhenggen Zha , Lingling Li , Jun Jiang , Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065
-
[6]
Yinwu Su , Xuanwen Zheng , Jianghui Du , Boda Li , Tao Wang , Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092
-
[7]
Bao Jia , Yunzhe Ke , Shiyue Sun , Dongxue Yu , Ying Liu , Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121
-
[8]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[9]
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
-
[10]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[11]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[12]
Lan Ma , Cailu He , Ziqi Liu , Yaohan Yang , Qingxia Ming , Xue Luo , Tianfeng He , Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046
-
[13]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[14]
Keying Qu , Jie Li , Ziqiu Lai , Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091
-
[15]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[16]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[17]
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
-
[18]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[19]
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
-
[20]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[1]
Metrics
- PDF Downloads(929)
- Abstract views(909)
- HTML views(22)