Citation: PENG Zhong, YAN Wen-Yi, WANG Shao-Na, ZHENG Shi-Li, DU Hao, ZHANG Yi. Effect of Alkali Concentration, Oxygen Partial Pressure and Temperature on Oxygen Reduction Reaction on Pt Electrode in NaOH Solution[J]. Acta Physico-Chimica Sinica, ;2014, 30(1): 67-74. doi: 10.3866/PKU.WHXB201311143
-
In this study, the influences of alkali concentration, oxygen partial pressure, and temperature on the oxygen reduction reaction (ORR) were examined in detail, using a specially designed electrochemical cell, by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) in NaOH solutions. It was found that the ORR pathway is dependent on the solution alkalinity, and is transformed from a two-electron reduction by forming HO2- in dilute solutions to a one-electron reduction by forming stable O2- in concentrated solutions. The process was significantly suppressed by decreases in the oxygen solubility and increases in the media viscosity. The oxygen pressure had a significant influence on the ORR, substantially promoting the ORR in alkaline solutions as a result of the greatly increased solubility of oxygen in the solutions. We obtained the Henry's constants of oxygen in NaOH solutions with different concentrations. The temperature had a clear dual effect on the ORR, as shown by the existence of an optimal temperature for the ORR in a given alkaline solution. These observations are discussed in terms of the oxygen reaction activity, oxygen solubility, and diffusion coefficient.
-
-
[1]
(1) Zhang, L. P.; Xia, Z. H. J. Phys. Chem. C 2011, 115, 11170.doi: 10.1021/jp201991j
-
[2]
(2) Raghuveer, V.; Manthiram, A.; Bard, A. J. J. Phys. Chem. B2005, 109 (48), 22909. doi: 10.1021/jp054815b
-
[3]
(3) Li, Z. P.; Liu, B. H. J. Appl. Electrochem. 2010, 40, 475. doi: 10.1007/s10800-009-0028-7
-
[4]
(4) Petlicki, J.; van de Ven, T. G. M. J. Chem. Soc., Faraday Trans.1998, 94, 2763. doi: 10.1039/a804551h
-
[5]
(5) Liu, B.; Bard, A. J. J. Phys. Chem. B 2002, 106 (49), 12801.doi: 10.1021/jp026824f
-
[6]
(6) Huang, J. S.; Zhang, X. G. Acta Phys. -Chim. Sin. 2006, 22,1551. [黄建书, 张校刚. 物理化学学报, 2006, 22, 1551.]doi: 10.3866/PKU.WHXB20061223
-
[7]
(7) Sawyer, D. T.; Jr, G. C.; Angells, C. T.; Nanni, E. J., Jr.;Tsuchlya, T. Anal. Chem. 1982, 54 (11), 1720. doi: 10.1021/ac00248a014
-
[8]
(8) Liu, Z. X.; Li, Z. P.; Qin, H. Y.; Liu, B. H. J. Power. Sources2011, 196 (11), 4972. doi: 10.1016/j.jpowsour.2011.01.102
-
[9]
(9) Schmidt, T. J.; Stamenkovic, V.; Markovic, N. M.; Ross, P. N.,Jr. Electrochim. Acta 2002, 47 (22), 3765.
-
[10]
(10) Genies, L.; Faure, R.; Durand, R. Electrochim. Acta 1998, 44 (8), 1317.
-
[11]
(11) Jin,W.; Du, H.; Zheng, S. L.; Xu, H. B.; Zhang, Y. J. Phys. Chem. B 2010, 114 (19), 6542. doi: 10.1021/jp102367u
-
[12]
(12) Zhang, C. Z.; Fu-Ren, F. F.; Bard, A. J. J. Am. Chem. Soc. 2009,131 (1), 177. doi: 10.1021/ja8064254
-
[13]
(13) Blizanac, B. B.; Ross, P. N.; Markovic, N. M. J. Phys. Chem. B2006, 110 (10), 4735.
-
[14]
(14) Li, X.; Heryadi, D.; Gewirth, A. A. Langmuir 2005, 21 (20),9251. doi: 10.1021/la0508745
-
[15]
(15) Adzic, R. R.; Strbac, S.; Anastasijevic, N. Mater. Chem. Phys.1989, 22 (3), 349.
-
[16]
(16) Song, C. J.; Zhang, L.; Zhang, J. J. J. Electroanal. Chem. 2006,587 (2), 293. doi: 10.1016/j.jelechem.2005.11.025
-
[17]
(17) Wang, Y.; Zhang, D.; Liu, H. Q. J. Power Sources 2010, 195 (10), 3135. doi: 10.1016/j.jpowsour.2009.11.112
-
[18]
(18) Johnson, E. L.; Pool, K. H.; Hamm, R. E. Anal. Chem. 1966, 38 (2), 183. doi: 10.1021/ac60234a008
-
[19]
(19) Peuchert, M.; Yoneda, T.; Dalla Betta, R. A.; Boudart, M.J. Electrochem. Soc. 1986, 133 (5), 944. doi: 10.1149/1.2108769
-
[20]
(20) Mukerjee, S. J. Appl. Electrochem. 1990, 20 (4), 537. doi: 10.1007/BF01008861
-
[21]
(21) Li, B.; Prakash, J. Electrochem. Commun. 2009, 11 (6), 1162.doi: 10.1016/j.elecom.2009.03.037
-
[22]
(22) Reeve, R.W.; Tseung, A. C. C. J. Electroanal. Chem. 1996, 403 (1), 69.
-
[23]
(23) Li, J. C. M.; Chang, P. J. Chem. Phys. 1955, 23, 518. doi: 10.1063/1.1742022
-
[24]
(24) Sab, N.; Claes, P.; Glibert, J. Electrochim. Acta 1998, 43 (14),2089.
-
[25]
(25) Milers, M. H. J. Appl. Electrochem. 2003, 33 (11), 1011. doi: 10.1023/A:1026270119048
-
[26]
(26) Wagner, F. T.; Ross, P. N., Jr. Appl. Surf. Sci. 1985, 24 (1), 87.doi: 10.1016/0169-4332(85)90214-4
-
[27]
(27) Teliska, M. T.; Murthi, V. S.; Mukerjee, S.; Ramaker, D. E.J. Electrochem. Soc. 2005, 152 (11), A2159.
-
[28]
(28) Nicholson, R. S. Anal. Chem. 1965, 37 (11), 1351. doi: 10.1021/ac60230a016
-
[29]
(29) Tromans, D. Ind. Eng. Chem. Res. 2000, 39 (3), 805. doi: 10.1021/ie990577t
-
[30]
(30) Davis, R. R.; Horvath, G. L.; Tobias, C.W. Electrochim. Acta1967, 12 (3), 287. doi: 10.1016/0013-4686(67)80007-0
-
[31]
(31) Shao, M. H.; Liu, P.; Adzic, R. R. J. Am. Chem. Soc. 2006, 128 (23), 7408. doi: 10.1021/ja061246s
-
[32]
(32) Randin, J. P. Electrochim. Acta 1974, 19 (2), 83. doi: 10.1016/0013-4686(74)85060-7
-
[33]
(33) Che, Y.; Tsushima, M.; Matsumoto, F.; Okajima, T.; Tokuda, K.;Ohsaka, T. J. Phys. Chem. 1996, 100 (51), 20134. doi: 10.1021/jp9625523
-
[34]
(34) Cao, R. Y. Journal of Tongji University 2001, 29, 826. [曹瑞钰. 同济大学学报, 2001, 29, 826.]
-
[1]
-
-
[1]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[2]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[3]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[4]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[5]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[6]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
-
[7]
Yuan Chun , Lijun Yang , Jinyue Yang , Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072
-
[8]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[9]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[10]
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117
-
[11]
Houjin Li , Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016
-
[12]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[13]
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043
-
[14]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[15]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[16]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[17]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[18]
Yuanyi Lu , Jun Zhao , Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088
-
[19]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[20]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[1]
Metrics
- PDF Downloads(634)
- Abstract views(858)
- HTML views(6)