Citation: RUAN Lin-Wei, QIU Ling-Guang, ZHU Yu-Jun, LU Yun-Xiang. Analysis of Electrical and Optical Properties of g-C3N4 with Carbon-Position Doping[J]. Acta Physico-Chimica Sinica, ;2014, 30(1): 43-52. doi: 10.3866/PKU.WHXB201311082
-
Some properties of g-C3N4 with carbon positions doped by B, P, and S atoms were investigated using quantum mechanics (first principles). There are two symmetric carbon atoms in g-C3N4, named C1 and C2. C1 is easier to dope than C2, and the system doped at C1 is more stable. It was found that it is easier to dope g-C3N4 with B than with P and S. There are significant differences among the crystal structures after doping, this is attributed to the sizes and electronegativities of the different doping atoms. The orbital population distributions showed that the electronic valences of the B, P, and S atoms changed when the doping was changed. This shows that hybrid doped atoms linked with adjacent atoms through covalent bonds are present. The differences between the valence electrons of the dopant atoms and the substituted atoms result in new bands after doping. The emergence of a new energy band in the band gap of the original g-C3N4 results in a decreased band gap after doping, indicating that the conductivity of the doped system is higher than that of the non-doped system. Analyses of the optical properties of pure g-C3N4 and doped g-C3N4 show that the optical absorption spectrum of g-C3N4 is mainly in the ultraviolet region, and the wavelength range of light absorption is unchanged after doping with P and S. However, after doping with B, the wavelength range of light absorption extends to the visible and infrared regions. Strong absorption in the infrared region shows that the photocatalytic activity of g-C3N4 after doping with B is much higher than that of undoped g-C3N4. The electron energy loss spectrum, optical conductivity spectrum, and the dielectric function curve support these points.
-
Keywords:
-
Doping
, - g-C3N4,
- Carbon-cite,
- Electricity,
- Optics,
- First-principles
-
-
-
[1]
(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37.
-
[2]
(2) Wang, F.; Hao, Y. J.; Jin, G. Q.; Guo, X. Y. Acta Phys. -Chim. Sin. 2007, 23, 1503. [王峰, 郝雅娟, 靳国强, 郭向云. 物理化学学报, 2007, 23, 1503.] doi: 10.1016/S1872-1508(07)60075-8
-
[3]
(3) Wang, Y.; Yan, J.W.; Zhu, Z.W.; Zhao, X. Q.; Zhong, Y. X.;Mao, B.W. Acta Phys. -Chim. Sin. 2013, 29, 1588. [王洋,颜佳伟, 朱在稳, 赵雪芹, 钟赟鑫, 毛秉伟. 物理化学学报,2013, 29, 1588.] doi: 10.3866/PKU.WHXB201304233
-
[4]
(4) Liu, A. Y.; Cohen, M. L. Science 1989, 245, 841. doi: 10.1126/science.245.4920.841
-
[5]
(5) Zhen, H. R.; Zhang, J. S.;Wang, X. C.; Fu, X. Z. Acta Phys. -Chim. Sin. 2012, 28, 2336. [郑华荣, 张金水, 王心晨,付贤智. 物理化学学报, 2012, 28, 2336.] doi: 10.3866/PKU.WHXB201209104
-
[6]
(6) Zhang, J. S.;Wang, B.;Wang, X. C. Acta Phys. -Chim. Sin.2013, 29,1865. [张金水, 王博, 王心晨. 物理化学学报,2013, 29, 1865.] doi: 10.3866/PKU.WHXB201306173
-
[7]
(7) Yang, X. J.;Wang, H. J. Acta Chim. Sin. 2009, 67, 1166. [杨晓军, 王红军. 化学学报, 2009, 67, 1166.]
-
[8]
(8) ettmann, F.; Thomas, A.; Antonietti, M. Angew. Chem. Int. Edit. 2007, 46, 2717.
-
[9]
(9) ettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Edit. 2006, 45, 4467.
-
[10]
(10) Kim, M.; Hwang, S.;Yu, J. S. J. Mater. Chem. 2007, 17, 1656.doi: 10.1039/b702213a
-
[11]
(11) Gracia, J.; Kroll, P. J. Mater. Chem. 2009, 19, 3020. doi: 10.1039/b821569c
-
[12]
(12) Sun, S. J. J. Magn. Magn. Mater. 2013, 344, 39. doi: 10.1016/j.jmmm.2013.05.037
-
[13]
(13) Lyth, S. M.; Nabae, Y.; Moriya, S.; Kuroki, S.; Kakimoto, M.;Ozaki, J.; Miyata, S. J. Phys. Chem. C 2009, 113, 20148. doi: 10.1021/jp907928j
-
[14]
(14) Qiu, H. H.;Wang, Z. J.; Sheng, X. L. Physica B 2013, 421, 46.doi: 10.1016/j.physb.2013.03.047
-
[15]
(15) Mane, G. P.; Dhawale, D. S.; Anand, C.; Ariga, K.; Ji, Q. M.;Wahab, M. A.; Mori, T.; Vinu, A. J. Mater. Chem. A 2013, 1,2913. doi: 10.1039/c2ta01215d
-
[16]
(16) Bai, X. J.;Wang, L.; Zong, R. L.; Zhu, Y. F. J. Phys. Chem. C2013, 117, 9952. doi: 10.1021/jp402062d
-
[17]
(17) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.;Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8,76. doi: 10.1038/nmat2317
-
[18]
(18) Stolbov, S.; Zuluaga, S. J. Phys.: Condens. Matter 2013, 25, 7.
-
[19]
(19) Chen, G.; Gao, S. P. Chin. Phys. B 2012, 21 (10), 7.
-
[20]
(20) Dong, G. H.; Zhao, K.; Zhang, L. Z. Chem. Commun. 2012, 48,6178. doi: 10.1039/c2cc32181e
-
[21]
(21) Hong, J. D.; Xia, X. Y.;Wang, Y. S.; Xu, R. J. Mater. Chem.2012, 22, 15006. doi: 10.1039/c2jm32053c
-
[22]
(22) Ma, X. G.; Lv, Y. H.; Xu, J.; Liu, Y. F.; Zhang, R. Q.; Zhu, Y. F.J. Phys. Chem. C 2012, 116, 23485. doi: 10.1021/jp308334x
-
[23]
(23) Yan, S. C.; Li, Z. S.; Zou, Z. G. Langmuir 2010, 26, 3894. doi: 10.1021/la904023j
-
[24]
(24) Yue, B.; Li, Q. Y.; Iwai, H.; Kako, T.; Ye, J. H. Sci. Technol. Adv. Mater. 2011, 12 (3), 7.
-
[25]
(25) Zhang, Y. J.; Mori, T.; Ye, J. H.; Antonietti, M. J. Am. Chem. Soc. 2010, 132, 6294. doi: 10.1021/ja101749y
-
[26]
(26) Liu, G.; Niu, P.; Sun, C. H.; Smith, S. C.; Chen, Z. G.; Lu, G.Q.; Cheng, H. M. J. Am. Chem. Soc. 2010, 132, 11642. doi: 10.1021/ja103798k
-
[27]
(27) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.;Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992,46, 6671. doi: 10.1103/PhysRevB.46.6671
-
[28]
(28) Ortmann, F.; Bechstedt, F.; Schmidt,W. G. Phys. Rev. B 2006,73 (20), 10.
-
[29]
(29) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892. doi: 10.1103/PhysRevB.41.7892
-
[30]
(30) Fischer, T. H.; Almlof, J. J. Phys. Chem. 1992, 96, 9768. doi: 10.1021/j100203a036
-
[31]
(31) Segall, M. D.; Lindan, Philip. J. D.; Probert, M. J.; Pickard, C.J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.: Condens. Matter 2002, 14, 2717. doi: 10.1088/0953-8984/14/11/301
-
[32]
(32) Teter, D. M.; Hemley, R. J. Science 1996, 271, 53. doi: 10.1126/science.271.5245.53
-
[33]
(33) Xu, Y.; Gao, S. P. Int. J. Hydrog. Energy 2012, 37, 11072. doi: 10.1016/j.ijhydene.2012.04.138
-
[34]
(34) Van deWalle, C. G.; Neugebauer, J. J. Appl. Phys. 2004, 95,3851. doi: 10.1063/1.1682673
-
[35]
(35) Molina, B.; Sansores, L. E. Mod. Phys. Lett. B 1999, 13, 193.doi: 10.1142/S0217984999000269
-
[36]
(36) Saha, S.; Sinha, T. P.; Mookerjee, A. Phys. Rev. B 2000, 62,8828. doi: 10.1103/PhysRevB.62.8828
-
[37]
(37) Antonov, V. N.; Yavorsky, B. Y.; Shpak, A. P.; Jepsen, O.;Guizzetti, G. Phys. Rev. B 1996, 53, 15631. doi: 10.1103/PhysRevB.53.15631
-
[38]
(38) Cai, M. Q.; Yin, Z.; Zhang, M. S. Appl. Phys. Lett. 2003, 83,2805. doi: 10.1063/1.1616631
-
[39]
(39) Wang, X. C.; Blechert, S.; Antonietti, M. ACS Catal. 2012, 2,1596. doi: 10.1021/cs300240x
-
[40]
(40) Wei,W.; Jacob, T. Phys. Rev. B 2013, 87 (8), 7.
-
[1]
-
-
[1]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[2]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[3]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[4]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[5]
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
-
[6]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[7]
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
-
[8]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[9]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[10]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[11]
Deqi Fan , Yicheng Tang , Yemei Liao , Yan Mi , Yi Lu , Xiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441
-
[12]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[13]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[14]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[15]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[16]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[17]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
-
[18]
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
-
[19]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[20]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[1]
Metrics
- PDF Downloads(813)
- Abstract views(1013)
- HTML views(13)