Citation: RUAN Lin-Wei, QIU Ling-Guang, ZHU Yu-Jun, LU Yun-Xiang. Analysis of Electrical and Optical Properties of g-C3N4 with Carbon-Position Doping[J]. Acta Physico-Chimica Sinica, ;2014, 30(1): 43-52. doi: 10.3866/PKU.WHXB201311082 shu

Analysis of Electrical and Optical Properties of g-C3N4 with Carbon-Position Doping

  • Received Date: 29 August 2013
    Available Online: 8 November 2013

    Fund Project: 国家自然科学基金(20971001,51002001,20371002)资助项目 (20971001,51002001,20371002)

  • Some properties of g-C3N4 with carbon positions doped by B, P, and S atoms were investigated using quantum mechanics (first principles). There are two symmetric carbon atoms in g-C3N4, named C1 and C2. C1 is easier to dope than C2, and the system doped at C1 is more stable. It was found that it is easier to dope g-C3N4 with B than with P and S. There are significant differences among the crystal structures after doping, this is attributed to the sizes and electronegativities of the different doping atoms. The orbital population distributions showed that the electronic valences of the B, P, and S atoms changed when the doping was changed. This shows that hybrid doped atoms linked with adjacent atoms through covalent bonds are present. The differences between the valence electrons of the dopant atoms and the substituted atoms result in new bands after doping. The emergence of a new energy band in the band gap of the original g-C3N4 results in a decreased band gap after doping, indicating that the conductivity of the doped system is higher than that of the non-doped system. Analyses of the optical properties of pure g-C3N4 and doped g-C3N4 show that the optical absorption spectrum of g-C3N4 is mainly in the ultraviolet region, and the wavelength range of light absorption is unchanged after doping with P and S. However, after doping with B, the wavelength range of light absorption extends to the visible and infrared regions. Strong absorption in the infrared region shows that the photocatalytic activity of g-C3N4 after doping with B is much higher than that of undoped g-C3N4. The electron energy loss spectrum, optical conductivity spectrum, and the dielectric function curve support these points.

  • 加载中
    1. [1]

      (1) Fujishima, A.; Honda, K. Nature 1972, 238, 37.

    2. [2]

      (2) Wang, F.; Hao, Y. J.; Jin, G. Q.; Guo, X. Y. Acta Phys. -Chim. Sin. 2007, 23, 1503. [王峰, 郝雅娟, 靳国强, 郭向云. 物理化学学报, 2007, 23, 1503.] doi: 10.1016/S1872-1508(07)60075-8

    3. [3]

      (3) Wang, Y.; Yan, J.W.; Zhu, Z.W.; Zhao, X. Q.; Zhong, Y. X.;Mao, B.W. Acta Phys. -Chim. Sin. 2013, 29, 1588. [王洋,颜佳伟, 朱在稳, 赵雪芹, 钟赟鑫, 毛秉伟. 物理化学学报,2013, 29, 1588.] doi: 10.3866/PKU.WHXB201304233

    4. [4]

      (4) Liu, A. Y.; Cohen, M. L. Science 1989, 245, 841. doi: 10.1126/science.245.4920.841

    5. [5]

      (5) Zhen, H. R.; Zhang, J. S.;Wang, X. C.; Fu, X. Z. Acta Phys. -Chim. Sin. 2012, 28, 2336. [郑华荣, 张金水, 王心晨,付贤智. 物理化学学报, 2012, 28, 2336.] doi: 10.3866/PKU.WHXB201209104

    6. [6]

      (6) Zhang, J. S.;Wang, B.;Wang, X. C. Acta Phys. -Chim. Sin.2013, 29,1865. [张金水, 王博, 王心晨. 物理化学学报,2013, 29, 1865.] doi: 10.3866/PKU.WHXB201306173

    7. [7]

      (7) Yang, X. J.;Wang, H. J. Acta Chim. Sin. 2009, 67, 1166. [杨晓军, 王红军. 化学学报, 2009, 67, 1166.]

    8. [8]

      (8) ettmann, F.; Thomas, A.; Antonietti, M. Angew. Chem. Int. Edit. 2007, 46, 2717.

    9. [9]

      (9) ettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Edit. 2006, 45, 4467.

    10. [10]

      (10) Kim, M.; Hwang, S.;Yu, J. S. J. Mater. Chem. 2007, 17, 1656.doi: 10.1039/b702213a

    11. [11]

      (11) Gracia, J.; Kroll, P. J. Mater. Chem. 2009, 19, 3020. doi: 10.1039/b821569c

    12. [12]

      (12) Sun, S. J. J. Magn. Magn. Mater. 2013, 344, 39. doi: 10.1016/j.jmmm.2013.05.037

    13. [13]

      (13) Lyth, S. M.; Nabae, Y.; Moriya, S.; Kuroki, S.; Kakimoto, M.;Ozaki, J.; Miyata, S. J. Phys. Chem. C 2009, 113, 20148. doi: 10.1021/jp907928j

    14. [14]

      (14) Qiu, H. H.;Wang, Z. J.; Sheng, X. L. Physica B 2013, 421, 46.doi: 10.1016/j.physb.2013.03.047

    15. [15]

      (15) Mane, G. P.; Dhawale, D. S.; Anand, C.; Ariga, K.; Ji, Q. M.;Wahab, M. A.; Mori, T.; Vinu, A. J. Mater. Chem. A 2013, 1,2913. doi: 10.1039/c2ta01215d

    16. [16]

      (16) Bai, X. J.;Wang, L.; Zong, R. L.; Zhu, Y. F. J. Phys. Chem. C2013, 117, 9952. doi: 10.1021/jp402062d

    17. [17]

      (17) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.;Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8,76. doi: 10.1038/nmat2317

    18. [18]

      (18) Stolbov, S.; Zuluaga, S. J. Phys.: Condens. Matter 2013, 25, 7.

    19. [19]

      (19) Chen, G.; Gao, S. P. Chin. Phys. B 2012, 21 (10), 7.

    20. [20]

      (20) Dong, G. H.; Zhao, K.; Zhang, L. Z. Chem. Commun. 2012, 48,6178. doi: 10.1039/c2cc32181e

    21. [21]

      (21) Hong, J. D.; Xia, X. Y.;Wang, Y. S.; Xu, R. J. Mater. Chem.2012, 22, 15006. doi: 10.1039/c2jm32053c

    22. [22]

      (22) Ma, X. G.; Lv, Y. H.; Xu, J.; Liu, Y. F.; Zhang, R. Q.; Zhu, Y. F.J. Phys. Chem. C 2012, 116, 23485. doi: 10.1021/jp308334x

    23. [23]

      (23) Yan, S. C.; Li, Z. S.; Zou, Z. G. Langmuir 2010, 26, 3894. doi: 10.1021/la904023j

    24. [24]

      (24) Yue, B.; Li, Q. Y.; Iwai, H.; Kako, T.; Ye, J. H. Sci. Technol. Adv. Mater. 2011, 12 (3), 7.

    25. [25]

      (25) Zhang, Y. J.; Mori, T.; Ye, J. H.; Antonietti, M. J. Am. Chem. Soc. 2010, 132, 6294. doi: 10.1021/ja101749y

    26. [26]

      (26) Liu, G.; Niu, P.; Sun, C. H.; Smith, S. C.; Chen, Z. G.; Lu, G.Q.; Cheng, H. M. J. Am. Chem. Soc. 2010, 132, 11642. doi: 10.1021/ja103798k

    27. [27]

      (27) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.;Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992,46, 6671. doi: 10.1103/PhysRevB.46.6671

    28. [28]

      (28) Ortmann, F.; Bechstedt, F.; Schmidt,W. G. Phys. Rev. B 2006,73 (20), 10.

    29. [29]

      (29) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892. doi: 10.1103/PhysRevB.41.7892

    30. [30]

      (30) Fischer, T. H.; Almlof, J. J. Phys. Chem. 1992, 96, 9768. doi: 10.1021/j100203a036

    31. [31]

      (31) Segall, M. D.; Lindan, Philip. J. D.; Probert, M. J.; Pickard, C.J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.: Condens. Matter 2002, 14, 2717. doi: 10.1088/0953-8984/14/11/301

    32. [32]

      (32) Teter, D. M.; Hemley, R. J. Science 1996, 271, 53. doi: 10.1126/science.271.5245.53

    33. [33]

      (33) Xu, Y.; Gao, S. P. Int. J. Hydrog. Energy 2012, 37, 11072. doi: 10.1016/j.ijhydene.2012.04.138

    34. [34]

      (34) Van deWalle, C. G.; Neugebauer, J. J. Appl. Phys. 2004, 95,3851. doi: 10.1063/1.1682673

    35. [35]

      (35) Molina, B.; Sansores, L. E. Mod. Phys. Lett. B 1999, 13, 193.doi: 10.1142/S0217984999000269

    36. [36]

      (36) Saha, S.; Sinha, T. P.; Mookerjee, A. Phys. Rev. B 2000, 62,8828. doi: 10.1103/PhysRevB.62.8828

    37. [37]

      (37) Antonov, V. N.; Yavorsky, B. Y.; Shpak, A. P.; Jepsen, O.;Guizzetti, G. Phys. Rev. B 1996, 53, 15631. doi: 10.1103/PhysRevB.53.15631

    38. [38]

      (38) Cai, M. Q.; Yin, Z.; Zhang, M. S. Appl. Phys. Lett. 2003, 83,2805. doi: 10.1063/1.1616631

    39. [39]

      (39) Wang, X. C.; Blechert, S.; Antonietti, M. ACS Catal. 2012, 2,1596. doi: 10.1021/cs300240x

    40. [40]

      (40) Wei,W.; Jacob, T. Phys. Rev. B 2013, 87 (8), 7.


  • 加载中
    1. [1]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    4. [4]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    5. [5]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    6. [6]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    7. [7]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    8. [8]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    12. [12]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    13. [13]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    18. [18]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    19. [19]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    20. [20]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

Metrics
  • PDF Downloads(813)
  • Abstract views(1013)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return