Citation: WANG Chang-Shun, KAN Cai-Xia, NI Yuan, XU Hai-Ying. Facile Preparation and Growth Mechanism of New-Type ld Nanoplates[J]. Acta Physico-Chimica Sinica, ;2014, 30(1): 194-204. doi: 10.3866/PKU.WHXB201311053 shu

Facile Preparation and Growth Mechanism of New-Type ld Nanoplates

  • Received Date: 23 August 2013
    Available Online: 5 November 2013

    Fund Project: 南京航空航天大学基本科研项目(NZ2013204)资助 (NZ2013204)

  • When a sticky gel consisting of an aqueous HAuCl4 solution mixed with poly-vinylpyrrolidone (PVP) surfactant is kept at room temperature (about 30 ℃), the HAuCl4 is reduced by the PVP, resulting in the formation of nanostructures. In this study, ld nanoplates with new shapes, which were single crystalline, several micrometers wide, and tens of nanometers thick, were mass-synthesized by adjusting the crystal growth conditions. For example, through inducing temperature decrease (10-20 ℃) in the early stage of crystal growth, the product is dominated by star-like ld nanoplates, together with other new shapes such as shields, concave and convex triangles, corner snipped shapes, triple branched shapes, and shapes that are step-rich in the side plane. Based on theoretical calculations, we present the growth mechanism of these new ld nanoplates. Under certain growth conditions, the (111) plane of the ld crystal can grow not only along the <110> direction into regular triangular or hexa nal nanoplates, but also along other directions such as <211> and <321>, to give new nanoplates with high-index side facets.

  • 加载中
    1. [1]

      (1) Lal, S.; Link, S.; Halas, N. J. Nat. Photonics 2007, 1, 641.doi: 10.1038/nphoton.2007.223

    2. [2]

      (2) De, M.; Ghosh, P. S.; Rotello, V. M. Adv. Mater. 2008, 20,4225. doi: 10.1002/adma.v20:22

    3. [3]

      (3) Zijlstra, P.; Chon, J.W.; Gu, M. Nature 2009, 459, 410.doi: 10.1038/nature08053

    4. [4]

      (4) Vigderman, L.; Khanal, B. P.; Zubarev, E. R. Adv. Mater. 2012,24, 4811. doi: 10.1002/adma.201201690

    5. [5]

      (5) Liu, X.W.;Wang, D. S.; Li, Y. D. Nano Today 2012, 7, 448.doi: 10.1016/j.nantod.2012.08.003

    6. [6]

      (6) ng, J. X.; Li, G. D.; Tang, Z. Y. Nano Today 2012, 7, 564.doi: 10.1016/j.nantod.2012.10.008

    7. [7]

      (7) Dykman, L.; Khlebtsov, N. Chem. Soc. Rev. 2012, 41, 2256.doi: 10.1039/c1cs15166e

    8. [8]

      (8) Rycenga, M.; Cobley, C. M.; Zeng, J.; Li,W. Y.; Moran, C. H.;Zhang, Q.; Qin, D.; Xia, Y. N. Chem. Rev. 2011, 111, 3669. doi: 10.1021/cr100275d

    9. [9]

      (9) Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.;El-Sayed, M. A. Chem. Soc. Rev. 2012, 41, 2740. doi: 10.1039/c1cs15237h

    10. [10]

      (10) Li, Z.; Zhang, S.; Halas, N. J.; Nordlander, P.; Xu, H. Small2011, 7, 593. doi: 10.1002/smll.v7.5

    11. [11]

      (11) Auguie, B.; Barnes,W. L. Phys. Rev. Lett. 2008, 101, 143902.doi: 10.1103/PhysRevLett.101.143902

    12. [12]

      (12) Naumov, I. I.; Li, Z. Y.; Bratkovsky, A. M. Appl. Phys. Lett.2010, 96, 033105. doi: 10.1063/1.3273859

    13. [13]

      (13) Ray, P. C. Chem. Rev. 2010, 110, 5332. doi: 10.1021/cr900335q

    14. [14]

      (14) Ming, T.; Zhao, L.; Xiao, M. D.;Wang, J. F. Small 2010, 6,2514. doi: 10.1002/smll.201000920

    15. [15]

      (15) Yu, Y. Y.; Chang, S. S.; Lee, C. L.;Wang, C. R. C. J. Phys. Chem. B 1997, 101, 6661. doi: 10.1021/jp971656q

    16. [16]

      (16) Link, S.; Mohamed, M. B.; El-Sayed, M. A. J. Phys. Chem. B1999, 103, 3073.

    17. [17]

      (17) van der Zande, B. M. I.; Bohmer, M. R.; Fokkink, L. G. J.;Schonenberger, C. Langmuir 2000, 16, 451. doi: 10.1021/la9900425

    18. [18]

      (18) Jana, N. R.; Gearheart, L.; Murphy, C. J. J. Phys. Chem. B 2001,105, 4065.

    19. [19]

      (19) Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15,414. doi: 10.1002/adma.200390095

    20. [20]

      (20) Sun, Y. G.; Xia, Y. N. Adv. Mater. 2002, 14, 833. doi: 10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K

    21. [21]

      (21) Chen, S. H.; Carroll, D. L. Nano Lett. 2002, 2, 1003. doi: 10.1021/nl025674h

    22. [22]

      (22) Sun, Y. G.; Mayers, B.; Xia, Y. N. Nano Lett. 2003, 3, 675.doi: 10.1021/nl034140t

    23. [23]

      (23) Okada, N.; Hamanaka, Y.; Nakamura, A.; Pastoriza-Santos, I.;Liz-Marzan, L. M. J. Phys. Chem. B 2004, 108, 8751. doi: 10.1021/jp048193q

    24. [24]

      (24) Kan, C. X.; Zhu, X. G.;Wang, G. H. J. Phys. Chem. B 2006,110, 4651. doi: 10.1021/jp054800d

    25. [25]

      (25) Li, C. C.; Sato, R.; Kanehara, M.; Zeng, H. B.; Bando, Y.;Teranishi, T. Angew. Chem. Int. Edit. 2009, 48, 6883.doi: 10.1002/anie.v48:37

    26. [26]

      (26) Sau, T. K.; Rogach, A. L. Adv. Mater. 2010, 22, 1781. doi: 10.1002/adma.v22:16

    27. [27]

      (27) Chen, A. Q.; Deprince, A. E., III; Demortiere, A.; Joshi-Imre,A.; Shevchenko, E. V.; Gray, S. K.;Welp, U.; Vlasko-Vlasov, V.K. Small 2011, 7, 2365. doi: 10.1002/smll.v7.16

    28. [28]

      (28) Tao, A. R.; Habas, S.; Yang, P. D. Small 2008, 4, 310.

    29. [29]

      (29) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.;Wang, Z. L. Science2007, 316, 732. doi: 10.1126/science.1140484

    30. [30]

      (30) Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Edit. 2009, 48, 60. doi: 10.1002/anie.200802248

    31. [31]

      (31) Homan, K. A.; Chen, J.; Schiano, A.; Mohamed, M.;Willets, K.A.; Murugesan, S.; Stevenson, K. J.; Emelianov, S. Adv. Funct. Mater. 2011, 21, 1673. doi: 10.1002/adfm.201001556

    32. [32]

      (32) Kan, C. X.;Wang, C. S.; Li, H. C.; Qi, J. S.; Zhu, J. J.; Li, Z. S.;Shi, D. N. Small 2010, 6, 1768. doi: 10.1002/smll.201000600

    33. [33]

      (33) Xia, Y. N.; Xia, X. H.;Wang, Y.; Xie, S. F. MRS Bull. 2013, 38,335. doi: 10.1557/mrs.2013.84

    34. [34]

      (34) Morriss, R. H.; Bottoms,W. R.; Peacock, R. J. J. Appl. Phys.1968, 39, 3016. doi: 10.1063/1.1656724

    35. [35]

      (35) Kan, C. X.;Wang, C. S.; Zhu, J. J.; Li, H. C. J. Solid State Chem. 2010, 183, 858. doi: 10.1016/j.jssc.2010.01.021

    36. [36]

      (36) Washio, I.; Xiong, Y. J.; Yin, Y. D.; Xia, Y. N. Adv. Mater. 2006,18, 1745.

    37. [37]

      (37) Courty, A.; Henry, A. I.; ubet, N.; Pileni, M. P. Nat. Mater.2007, 6, 900. doi: 10.1038/nmat2004

    38. [38]

      (38) Radha, B.; Kulkarni, G. U. Crystal Growth & Design 2011, 11,320. doi: 10.1021/cg1015548

    39. [39]

      (39) Jin, R. C.; Cao, Y. C.; Hao, E.; Metraux, G. S.; Schatz, G. C.;Mirkin, C. A. Nature 2003, 425, 487. doi: 10.1038/nature02020

    40. [40]

      (40) Li, C. C.; Cai,W. P.; Cao, B. Q.; Sun, F. Q.; Li, Y.; Kan, C. X.;Zhang, L. D. Adv. Funct. Mater. 2006, 16, 83.

    41. [41]

      (41) Yao, L. Z. Foundation of Crystal Growth; University of Scienceand Technology of China Press: Hefei, 1995; pp 258-310, 409-429. [姚连增. 晶体生长基础. 合肥: 中国科学技术大学出版社, 1995: 258-310; 409-429.]

    42. [42]

      (42) Kan, C. X.; Cai,W. P.; Li, C. C.; Zhang, L. D. J. Mater. Res.2004, 20, 320.

    43. [43]

      (43) Kamat, P. V. J. Phys. Chem. B 2002, 106, 7729. doi: 10.1021/jp0209289

    44. [44]

      (44) Wiley, B.; Sun, Y. G.; Chen, J. Y.; Cang, H.; Li, Z. Y.; Li, X. D.;Xia, Y. N. MRS Bull. 2005, 30, 356. doi: 10.1557/mrs2005.98

    45. [45]

      (45) Germain, V.; Li, J.; Ingert, D.;Wang, Z. L.; Pileni, M. P. J. Phys. Chem. B 2003, 107, 8717. doi: 10.1021/jp0303826

    46. [46]

      (46) Aherne, D.; Ledwith, D. M.; Gara, M.; Kelly, J. M. Adv. Funct. Mater. 2008, 18, 2005. doi: 10.1002/adfm.v18:14

    47. [47]

      (47) Duan, J. Y.; Zhang, Q. X.;Wang, Y. L.; Guan, J. G. Acta Phys. - Chim. Sin. 2009, 25, 1405. [段君元, 章桥新, 王一龙, 官建国.物理化学学报, 2009, 25, 1405.] doi: 10.3866/PKU.WHXB20090731

    48. [48]

      (48) Wang, Z. L. J. Phys. Chem. B 2000, 104, 1153. doi: 10.1021/jp993593c

    49. [49]

      (49) Xue, C.; Metraux, G. S.; Millstone, J. E.; Mirkin, C. A. J. Am. Chem. Soc. 2008, 130, 8337. doi: 10.1021/ja8005258

    50. [50]

      (50) Xiong, Y. J.;Washio, I.; Chen, J. Y.; Cai, H. G.; Li, Z. Y.; Xia, Y.N. Langmuir 2006, 22, 8563. doi: 10.1021/la061323x

    51. [51]

      (51) Nam, H. S.; Hwang, N. M.; Yu, B. D.; Yoon, J. K. Phys. Rev. Lett. 2002, 89, 275502. doi: 10.1103/PhysRevLett.89.275502

    52. [52]

      (52) Cao, Y. L.; Ding, X. L.; Li, H. C.; Yi, Z. G.;Wang, X. F.; Zhu, J.J.; Kan, C. X. Acta Phys. -Chim. Sin. 2011, 27, 1273. [曹艳丽,丁孝龙, 李红臣, 伊兆广, 王祥夫, 朱杰君, 阚彩侠. 物理化学学报, 2011, 27, 1273.] doi: 10.3866/PKU.WHXB20110604

    53. [53]

      (53) Hoppe, C. E.; Lazzari, M.; Pardinas-Blanco, I.; Lopez-Quintela,M. A. Langmuir 2006, 22, 7027. doi: 10.1021/la060885d

    54. [54]

      (54) Wang, C. S.; Kan, C. X.; Zhu, J. J.; Zeng, X. L.;Wang, X. F.; Li,H. C.; Shi, D. N. Journal of Nanomaterials 2010, 969030.

    55. [55]

      (55) Delley, B. J. Chem. Phys. 2000, 113, 7756. doi: 10.1063/1.1316015


  • 加载中
    1. [1]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    2. [2]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    3. [3]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    4. [4]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    5. [5]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    6. [6]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    7. [7]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    12. [12]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    13. [13]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    14. [14]

      Zhongbin Pan Shijie Huang Yunjie Luo Hongzhen Xie . Design of a Comprehensive Experiment for Determining Permanganate Index (CODMn) in Drinking Water. University Chemistry, 2024, 39(7): 354-360. doi: 10.12461/PKU.DXHX202311040

    15. [15]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    16. [16]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    17. [17]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    18. [18]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    19. [19]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    20. [20]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

Metrics
  • PDF Downloads(965)
  • Abstract views(1505)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return