Citation:
WANG Chang-Shun, KAN Cai-Xia, NI Yuan, XU Hai-Ying. Facile Preparation and Growth Mechanism of New-Type ld Nanoplates[J]. Acta Physico-Chimica Sinica,
;2014, 30(1): 194-204.
doi:
10.3866/PKU.WHXB201311053
-
When a sticky gel consisting of an aqueous HAuCl4 solution mixed with poly-vinylpyrrolidone (PVP) surfactant is kept at room temperature (about 30 ℃), the HAuCl4 is reduced by the PVP, resulting in the formation of nanostructures. In this study, ld nanoplates with new shapes, which were single crystalline, several micrometers wide, and tens of nanometers thick, were mass-synthesized by adjusting the crystal growth conditions. For example, through inducing temperature decrease (10-20 ℃) in the early stage of crystal growth, the product is dominated by star-like ld nanoplates, together with other new shapes such as shields, concave and convex triangles, corner snipped shapes, triple branched shapes, and shapes that are step-rich in the side plane. Based on theoretical calculations, we present the growth mechanism of these new ld nanoplates. Under certain growth conditions, the (111) plane of the ld crystal can grow not only along the <110> direction into regular triangular or hexa nal nanoplates, but also along other directions such as <211> and <321>, to give new nanoplates with high-index side facets.
-
-
-
[1]
(1) Lal, S.; Link, S.; Halas, N. J. Nat. Photonics 2007, 1, 641.doi: 10.1038/nphoton.2007.223
-
[2]
(2) De, M.; Ghosh, P. S.; Rotello, V. M. Adv. Mater. 2008, 20,4225. doi: 10.1002/adma.v20:22
-
[3]
(3) Zijlstra, P.; Chon, J.W.; Gu, M. Nature 2009, 459, 410.doi: 10.1038/nature08053
-
[4]
(4) Vigderman, L.; Khanal, B. P.; Zubarev, E. R. Adv. Mater. 2012,24, 4811. doi: 10.1002/adma.201201690
-
[5]
(5) Liu, X.W.;Wang, D. S.; Li, Y. D. Nano Today 2012, 7, 448.doi: 10.1016/j.nantod.2012.08.003
-
[6]
(6) ng, J. X.; Li, G. D.; Tang, Z. Y. Nano Today 2012, 7, 564.doi: 10.1016/j.nantod.2012.10.008
-
[7]
(7) Dykman, L.; Khlebtsov, N. Chem. Soc. Rev. 2012, 41, 2256.doi: 10.1039/c1cs15166e
-
[8]
(8) Rycenga, M.; Cobley, C. M.; Zeng, J.; Li,W. Y.; Moran, C. H.;Zhang, Q.; Qin, D.; Xia, Y. N. Chem. Rev. 2011, 111, 3669. doi: 10.1021/cr100275d
-
[9]
(9) Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.;El-Sayed, M. A. Chem. Soc. Rev. 2012, 41, 2740. doi: 10.1039/c1cs15237h
-
[10]
(10) Li, Z.; Zhang, S.; Halas, N. J.; Nordlander, P.; Xu, H. Small2011, 7, 593. doi: 10.1002/smll.v7.5
-
[11]
(11) Auguie, B.; Barnes,W. L. Phys. Rev. Lett. 2008, 101, 143902.doi: 10.1103/PhysRevLett.101.143902
-
[12]
(12) Naumov, I. I.; Li, Z. Y.; Bratkovsky, A. M. Appl. Phys. Lett.2010, 96, 033105. doi: 10.1063/1.3273859
-
[13]
(13) Ray, P. C. Chem. Rev. 2010, 110, 5332. doi: 10.1021/cr900335q
-
[14]
(14) Ming, T.; Zhao, L.; Xiao, M. D.;Wang, J. F. Small 2010, 6,2514. doi: 10.1002/smll.201000920
-
[15]
(15) Yu, Y. Y.; Chang, S. S.; Lee, C. L.;Wang, C. R. C. J. Phys. Chem. B 1997, 101, 6661. doi: 10.1021/jp971656q
-
[16]
(16) Link, S.; Mohamed, M. B.; El-Sayed, M. A. J. Phys. Chem. B1999, 103, 3073.
-
[17]
(17) van der Zande, B. M. I.; Bohmer, M. R.; Fokkink, L. G. J.;Schonenberger, C. Langmuir 2000, 16, 451. doi: 10.1021/la9900425
-
[18]
(18) Jana, N. R.; Gearheart, L.; Murphy, C. J. J. Phys. Chem. B 2001,105, 4065.
-
[19]
(19) Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15,414. doi: 10.1002/adma.200390095
-
[20]
(20) Sun, Y. G.; Xia, Y. N. Adv. Mater. 2002, 14, 833. doi: 10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K
-
[21]
(21) Chen, S. H.; Carroll, D. L. Nano Lett. 2002, 2, 1003. doi: 10.1021/nl025674h
-
[22]
(22) Sun, Y. G.; Mayers, B.; Xia, Y. N. Nano Lett. 2003, 3, 675.doi: 10.1021/nl034140t
-
[23]
(23) Okada, N.; Hamanaka, Y.; Nakamura, A.; Pastoriza-Santos, I.;Liz-Marzan, L. M. J. Phys. Chem. B 2004, 108, 8751. doi: 10.1021/jp048193q
-
[24]
(24) Kan, C. X.; Zhu, X. G.;Wang, G. H. J. Phys. Chem. B 2006,110, 4651. doi: 10.1021/jp054800d
-
[25]
(25) Li, C. C.; Sato, R.; Kanehara, M.; Zeng, H. B.; Bando, Y.;Teranishi, T. Angew. Chem. Int. Edit. 2009, 48, 6883.doi: 10.1002/anie.v48:37
-
[26]
(26) Sau, T. K.; Rogach, A. L. Adv. Mater. 2010, 22, 1781. doi: 10.1002/adma.v22:16
-
[27]
(27) Chen, A. Q.; Deprince, A. E., III; Demortiere, A.; Joshi-Imre,A.; Shevchenko, E. V.; Gray, S. K.;Welp, U.; Vlasko-Vlasov, V.K. Small 2011, 7, 2365. doi: 10.1002/smll.v7.16
-
[28]
(28) Tao, A. R.; Habas, S.; Yang, P. D. Small 2008, 4, 310.
-
[29]
(29) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.;Wang, Z. L. Science2007, 316, 732. doi: 10.1126/science.1140484
-
[30]
(30) Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Edit. 2009, 48, 60. doi: 10.1002/anie.200802248
-
[31]
(31) Homan, K. A.; Chen, J.; Schiano, A.; Mohamed, M.;Willets, K.A.; Murugesan, S.; Stevenson, K. J.; Emelianov, S. Adv. Funct. Mater. 2011, 21, 1673. doi: 10.1002/adfm.201001556
-
[32]
(32) Kan, C. X.;Wang, C. S.; Li, H. C.; Qi, J. S.; Zhu, J. J.; Li, Z. S.;Shi, D. N. Small 2010, 6, 1768. doi: 10.1002/smll.201000600
-
[33]
(33) Xia, Y. N.; Xia, X. H.;Wang, Y.; Xie, S. F. MRS Bull. 2013, 38,335. doi: 10.1557/mrs.2013.84
-
[34]
(34) Morriss, R. H.; Bottoms,W. R.; Peacock, R. J. J. Appl. Phys.1968, 39, 3016. doi: 10.1063/1.1656724
-
[35]
(35) Kan, C. X.;Wang, C. S.; Zhu, J. J.; Li, H. C. J. Solid State Chem. 2010, 183, 858. doi: 10.1016/j.jssc.2010.01.021
-
[36]
(36) Washio, I.; Xiong, Y. J.; Yin, Y. D.; Xia, Y. N. Adv. Mater. 2006,18, 1745.
-
[37]
(37) Courty, A.; Henry, A. I.; ubet, N.; Pileni, M. P. Nat. Mater.2007, 6, 900. doi: 10.1038/nmat2004
-
[38]
(38) Radha, B.; Kulkarni, G. U. Crystal Growth & Design 2011, 11,320. doi: 10.1021/cg1015548
-
[39]
(39) Jin, R. C.; Cao, Y. C.; Hao, E.; Metraux, G. S.; Schatz, G. C.;Mirkin, C. A. Nature 2003, 425, 487. doi: 10.1038/nature02020
-
[40]
(40) Li, C. C.; Cai,W. P.; Cao, B. Q.; Sun, F. Q.; Li, Y.; Kan, C. X.;Zhang, L. D. Adv. Funct. Mater. 2006, 16, 83.
-
[41]
(41) Yao, L. Z. Foundation of Crystal Growth; University of Scienceand Technology of China Press: Hefei, 1995; pp 258-310, 409-429. [姚连增. 晶体生长基础. 合肥: 中国科学技术大学出版社, 1995: 258-310; 409-429.]
-
[42]
(42) Kan, C. X.; Cai,W. P.; Li, C. C.; Zhang, L. D. J. Mater. Res.2004, 20, 320.
-
[43]
(43) Kamat, P. V. J. Phys. Chem. B 2002, 106, 7729. doi: 10.1021/jp0209289
-
[44]
(44) Wiley, B.; Sun, Y. G.; Chen, J. Y.; Cang, H.; Li, Z. Y.; Li, X. D.;Xia, Y. N. MRS Bull. 2005, 30, 356. doi: 10.1557/mrs2005.98
-
[45]
(45) Germain, V.; Li, J.; Ingert, D.;Wang, Z. L.; Pileni, M. P. J. Phys. Chem. B 2003, 107, 8717. doi: 10.1021/jp0303826
-
[46]
(46) Aherne, D.; Ledwith, D. M.; Gara, M.; Kelly, J. M. Adv. Funct. Mater. 2008, 18, 2005. doi: 10.1002/adfm.v18:14
-
[47]
(47) Duan, J. Y.; Zhang, Q. X.;Wang, Y. L.; Guan, J. G. Acta Phys. - Chim. Sin. 2009, 25, 1405. [段君元, 章桥新, 王一龙, 官建国.物理化学学报, 2009, 25, 1405.] doi: 10.3866/PKU.WHXB20090731
-
[48]
(48) Wang, Z. L. J. Phys. Chem. B 2000, 104, 1153. doi: 10.1021/jp993593c
-
[49]
(49) Xue, C.; Metraux, G. S.; Millstone, J. E.; Mirkin, C. A. J. Am. Chem. Soc. 2008, 130, 8337. doi: 10.1021/ja8005258
-
[50]
(50) Xiong, Y. J.;Washio, I.; Chen, J. Y.; Cai, H. G.; Li, Z. Y.; Xia, Y.N. Langmuir 2006, 22, 8563. doi: 10.1021/la061323x
-
[51]
(51) Nam, H. S.; Hwang, N. M.; Yu, B. D.; Yoon, J. K. Phys. Rev. Lett. 2002, 89, 275502. doi: 10.1103/PhysRevLett.89.275502
-
[52]
(52) Cao, Y. L.; Ding, X. L.; Li, H. C.; Yi, Z. G.;Wang, X. F.; Zhu, J.J.; Kan, C. X. Acta Phys. -Chim. Sin. 2011, 27, 1273. [曹艳丽,丁孝龙, 李红臣, 伊兆广, 王祥夫, 朱杰君, 阚彩侠. 物理化学学报, 2011, 27, 1273.] doi: 10.3866/PKU.WHXB20110604
-
[53]
(53) Hoppe, C. E.; Lazzari, M.; Pardinas-Blanco, I.; Lopez-Quintela,M. A. Langmuir 2006, 22, 7027. doi: 10.1021/la060885d
-
[54]
(54) Wang, C. S.; Kan, C. X.; Zhu, J. J.; Zeng, X. L.;Wang, X. F.; Li,H. C.; Shi, D. N. Journal of Nanomaterials 2010, 969030.
-
[55]
(55) Delley, B. J. Chem. Phys. 2000, 113, 7756. doi: 10.1063/1.1316015
-
[1]
-
-
-
[1]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[2]
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
-
[3]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[4]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
-
[5]
Tingting Yu , Si Chen , Lianglong Sun , Tongtong Shi , Kai Sun , Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022
-
[6]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[7]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[8]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[9]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[10]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[11]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
-
[12]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[13]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[14]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[15]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[16]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[17]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[18]
Zhongbin Pan , Shijie Huang , Yunjie Luo , Hongzhen Xie . Design of a Comprehensive Experiment for Determining Permanganate Index (CODMn) in Drinking Water. University Chemistry, 2024, 39(7): 354-360. doi: 10.12461/PKU.DXHX202311040
-
[19]
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
-
[20]
Zian Fang , Qianqian Wen , Yidi Wang , Hongxia Ouyang , Qi Wang , Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032
-
[1]
Metrics
- PDF Downloads(965)
- Abstract views(1581)
- HTML views(114)