Citation: DONG Li-Li, WANG Ying-Yong, TONG Xi-Li, JIN Guo-Qiang, GUO Xiang-Yun. Synthesis and Characterization of Boron-Doped SiC for Visible Light Driven Hydrogen Production[J]. Acta Physico-Chimica Sinica, ;2014, 30(1): 135-140. doi: 10.3866/PKU.WHXB201311052
-
Boron-doped β-SiC (BxSiC) photocatalysts were prepared by in-situ carbothermal reduction, and their photocatalytic performances for H2 evolution under visible light irradiation were investigated. The crystal structure, surface property, morphology, and band gap structure of the BxSiC photocatalysts were studied using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and ultraviolet-visible absorption spectroscopy. The characterization results indicate that B atoms have doped into the SiC lattice and substituted Si sites, leading to the formation of a shallow acceptor level above the valence band of SiC, resulting in a narrowed band gap energy. The shallow acceptor level acts as a hole trap, preventing the recombination of photo-excited electrons and holes. Therefore, the photocatalytic H2 evolution activity of B-doped SiC was greatly improved compared with that of SiC. The highest hydrogen evolution rate was obtained when the B/Si molar ratio was 0.05.
-
Keywords:
-
β-SiC
, - B doping,
- Photocatalysis,
- Hydrogen evolution,
- Visible light
-
-
-
[1]
(1) Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue,Y.; Domen, K. Nature 2006, 440, 295. doi: 10.1038/440295a
-
[2]
(2) Nowotny, J.; Sorrell, C. C.; Sheppard, L. R.; Bak, T. Int. J. Hydrog. Energy 2005, 30, 521. doi: 10.1016/j.ijhydene.2004.06.012
-
[3]
(3) Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev.2010, 110, 6503. doi: 10.1021/cr1001645
-
[4]
(4) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/b800489g
-
[5]
(5) Wang, Q.; Liu, H.; Jiang, L.; Yuan, J.; Shangguan,W. Catal. Lett. 2009, 131, 160. doi: 10.1007/s10562-009-9949-3
-
[6]
(6) Gao, Y. T.;Wang, Y. Q.;Wang, Y. X. React. Kinet. Catal. Lett.2007, 91, 12.
-
[7]
(7) Hao, J. Y.;Wang, Y. Y.; Tong, X. L.; Jin, G. Q.; Guo, X. Y. Int. J. Hydrog. Energy 2012, 37, 15038. doi: 10.1016/j.ijhydene.2012.08.021
-
[8]
(8) Yang, J. J.; Zeng, X. P.; Chen, L. J.; Yuan,W. X. Appl. Phys. Lett. 2013, 102, 083101. doi: 10.1063/1.4792695
-
[9]
(9) Wu, X. L.; Xiong, S. J.; Zhu, J.;Wang, J.; Shen, J. C.; Chu, P. K.Nano Lett. 2009, 9, 4053. doi: 10.1021/nl902226u
-
[10]
(10) Li, Y. X.; Ma, G. F.; Peng, S. Q.; Lu, G. X.; Li, S. B. Appl. Surf. Sci. 2008, 254, 6831. doi: 10.1016/j.apsusc.2008.04.075
-
[11]
(11) Ruschenschmidt, K.; Bracht, H.; Laube, M.; Stolwijk, N. A.;Pensl, G. Physica B 2001, 308, 734.
-
[12]
(12) Persson, C.; Lindefelt, U.; Sernelius, B. E. J. Appl. Phys. 1999,86, 4419. doi: 10.1063/1.371380
-
[13]
(13) Agathopoulos, S. Ceram. Int. 2012, 38, 3309. doi: 10.1016/j.ceramint.2011.12.040
-
[14]
(14) Shimoda, K.; Park, J. S.; Hinoki, T.; Kohyama, A. Appl. Surf. Sci. 2007, 253, 9450. doi: 10.1016/j.apsusc.2007.06.023
-
[15]
(15) Oswald, S.;Wirth, H. Surf. Interface Anal. 1999, 27, 136.
-
[16]
(16) Seo,W. S.; Koumoto, K.; Arai, S. J. Am. Ceram. Soc. 1998, 81,1255.
-
[17]
(17) Cerovic, L.; Milonjic, S. K.; Zec, S. P. Ceram. Int. 1995, 21,271. doi: 10.1016/0272-8842(95)99793-B
-
[18]
(18) Chen, J.; Tang,W.; Xin, L.; Shi, Q. Appl. Phys. A-Mater. 2011,102, 213. doi: 10.1007/s00339-010-5943-2
-
[19]
(19) Zhou,W. M.; Yan, L. J.;Wang, Y.; Zhang, Y. F. Appl. Phys. Lett.2006, 89, 013105. doi: 10.1063/1.2219139
-
[20]
(20) Fukumoto, A. Phys. Rev. B 1996, 53, 4458. doi: 10.1103/PhysRevB.53.4458
-
[21]
(21) Weingartner, R.; Bickermann, M.; Bushevoy, S.; Hofmann, D.;Rasp, M.; Straubinger, T. L.;Wellmann, P. J.;Winnacker, A.Mater. Sci. Eng. B 2001, 80, 357. doi: 10.1016/S0921-5107(00)00599-7
-
[22]
(22) Sebastian, P. J.; Matthews, N. R.; Mathew, X.; Pattabi, M.;Turner, J. Int. J. Hydrog. Energy 2001, 26, 123. doi: 10.1016/S0360-3199(00)00047-1
-
[23]
(23) Akikusa, J.; Khan, S. U. M. Int. J. Hydrog. Energy 2002, 27,863. doi: 10.1016/S0360-3199(01)00191-4
-
[24]
(24) Sayama, K.; Nomura, A.; Arai, T.; Sugita, T.; Abe, R.; Yanagida,M.; Oi, T.; Iwasaki, Y.; Abe, Y.; Sugihara, H. J. Phys. Chem. B2006, 110, 11352. doi: 10.1021/jp057539+
-
[25]
(25) Kanhere, P.; Zheng, J.W.; Chen, Z. Int. J. Hydrog. Energy 2012,37, 4889. doi: 10.1016/j.ijhydene.2011.12.056
-
[26]
(26) Li,W. Z.; Li, J.;Wang, X.; Chen, Q. Y. Appl. Surf. Sci. 2012,263, 157. doi: 10.1016/j.apsusc.2012.09.021
-
[27]
(27) Yuan,W. H.; Liu, X. C.; Li, L. Acta Phys. -Chim. Sin. 2013, 29,151. [袁文辉, 刘晓晨, 李莉. 物理化学学报, 2013, 29,151.] doi: 10.3866/PKU.WHXB201210093
-
[28]
(28) Sun, X. J.; Liu, H.; Dong, J. H.;Wei, J. Z.; Zhang, Y. Catal. Lett. 2010, 135, 219. doi: 10.1007/s10562-010-0302-7
-
[29]
(29) Husin, H.; Chen, H. M.; Su,W. N.; Pan, C. J.; Chuang,W. T.;Sheu, H. S.; Hwang, B. J. Appl. Catal. B-Environ. 2011, 102,343. doi: 10.1016/j.apcatb.2010.12.024
-
[30]
(30) Yan, S.; Huang, Q. D.; Lin, J. D.; Yuan, Y. Z.; Liao, D.W. Acta Phys. -Chim. Sin. 2011, 27, 2406. [闫石, 黄勤栋, 林敬东,袁友珠, 廖代伟. 物理化学学报, 2011, 27, 2406.] doi: 10.3866/PKU.WHXB20110929
-
[1]
-
-
[1]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[2]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[3]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[4]
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
-
[5]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[6]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[7]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[8]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[9]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[10]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[11]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[12]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[13]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[14]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[15]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[16]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[17]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[18]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[19]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[20]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[1]
Metrics
- PDF Downloads(1124)
- Abstract views(865)
- HTML views(17)