Citation: LI Bing-Ke, CONG Yong, TIAN Zhi-Yue, XUE Ying. Predicting and Virtually Screening the Selective Inhibitors of MMP-13 over MMP-1 by Molecular Descriptors and Machine Learning Methods[J]. Acta Physico-Chimica Sinica, ;2014, 30(1): 171-182. doi: 10.3866/PKU.WHXB201311041 shu

Predicting and Virtually Screening the Selective Inhibitors of MMP-13 over MMP-1 by Molecular Descriptors and Machine Learning Methods

  • Received Date: 5 July 2013
    Available Online: 4 November 2013

    Fund Project: 国家自然科学基金(21173151)资助项目 (21173151)

  • Matrix metalloproteinase-13 (MMP-13) is an interesting target for the prevention and therapy of osteoarthritis (OA). Interruption of MMP-13 activity with an inhibitor has the potential to affect OA. However, a broad-spectrum inhibitor, which restrains the other members of the MMP family, especially MMP-1, can cause musculoskeletal syndrome. So, the design and discovery of potential and highly selective inhibitors for MMP-13 over MMP-1 are necessary and of great significance for the development of novel therapeutic agents against OA. Two machine-learning (ML) methods, support vector machine and random forest (RF), were explored in this work to develop classification models for predicting selective inhibitors of MMP-13 over MMP-1 from diverse compounds. These ML models achieved promising prediction accuracies. Among the two ML models, RF gave the better performance, i.e., 97.58% for MMP-13 selective inhibitors and 100% for non-inhibitors. We also used different feature selection methods to extract the molecular features most relevant to selective inhibition of MMP-13 over MMP-1 from the two models. In addition, the betterperforming RF model was used to perform virtual screening of MMP-13 selective inhibitors against the "fragment-like" subset of the ZINC database to enrich the potential active agents, thereby obtaining a series of the most potent candidates. Our study suggests that ML methods, particularly RF, are potentially useful for facilitating the discovery of MMP-13 inhibitors and for identifying the molecular descriptors associated with MMP-13 selective inhibitors.

  • 加载中
    1. [1]

      (1) Felson, D. T. The Epidemiology of Knee Osteoarthritis: Resultsfrom the Framingham Osteoarthritis Study; Seminars in Arthritis and Rheumatism; Elsevier: Amsterdam, 1990; Vol. 20,No. 3, pp 42-50.

    2. [2]

      (2) Schnute, M. E.; O′Brien, P. M.; Nahra, J.; Morris, M.; HowardRoark,W.; Hanau, C. E.; Ruminski, P. G.; Scholten, J. A.;Fletcher, T. R.; Hamper, B. C. Bioorg. Med. Chem. Lett. 2010,20, 576. doi: 10.1016/j.bmcl.2009.11.081

    3. [3]

      (3) De Savi, C.; Pape, A.; Cumming, J. G.; Ting, A.; Smith, P. D.;Burrows, J. N.; Mills, M.; Davies, C.; Lamont, S.; Milne, D.Bioorg. Med. Chem. Lett. 2011, 21, 1376. doi: 10.1016/j.bmcl.2011.01.036

    4. [4]

      (4) Nuti, E.; Casalini, F.; Avramova, S. I.; Santamaria, S.;Cercignani, G.; Marinelli, L.; La Pietra, V.; Novellino, E.;Orlandini, E.; Nencetti, S. J. Med. Chem. 2009, 52, 4757. doi: 10.1021/jm900261f

    5. [5]

      (5) Sanghi, D.; Avasthi, S.; Srivastava, R.; Singh, A. Internet Journal of Medical Update 2009, 4, 42.

    6. [6]

      (6) Nagase, H.; Kashiwagi, M. Arthritis Research and Therapy2003, 5, 94.

    7. [7]

      (7) Lauer-Fields, J. L.; Minond, D.; Chase, P. S.; Baillargeon, P. E.;Saldanha, S. A.; Stawikowska, R.; Hodder, P.; Fields, G. B.Biorg. Med. Chem. 2009, 17, 990. doi: 10.1016/j.bmc.2008.03.004

    8. [8]

      (8) Woessner, J.; Nagase, H. Matrix Metalloproteinases and TIMPs;Oxford University Press: Oxford, United Kingdom, 2000; p 72.

    9. [9]

      (9) Cawston, T. E.;Wilson, A. J. Best Practice & Research Clinical Rheumatology 2006, 20, 983. doi: 10.1016/j.berh.2006.06.007

    10. [10]

      (10) Huxley-Jones, J.; Foord, S. M.; Barnes, M. R. Drug Discov. Today 2008, 13, 685. doi: 10.1016/j.drudis.2008.05.005

    11. [11]

      (11) Johnson, A. R.; Pavlovsky, A. G.; Ortwine, D. F.; Prior, F.; Man,C. F.; Bornemeier, D. A.; Banotai, C. A.; Mueller,W. T.;McConnell, P.; Yan, C. J. Biol. Chem. 2007, 282, 27781. doi: 10.1074/jbc.M703286200

    12. [12]

      (12) Billinghurst, R. C.; Dahlberg, L.; Ionescu, M.; Reiner, A.;Bourne, R.; Rorabeck, C.; Mitchell, P.; Hambor, J.; Diekmann,O.; Tschesche, H. J. Clin. Invest. 1997, 99, 1534. doi: 10.1172/JCI119316

    13. [13]

      (13) Fingleton, B. Semin. Cell Dev. Biol. 2008, 19, 61. doi: 10.1016/j.semcdb.2007.06.006

    14. [14]

      (14) Monovich, L. G.; Tommasi, R. A.; Fujimoto, R. A.; Blancuzzi,V.; Clark, K.; Cornell,W. D.; Doti, R.; Doughty, J.; Fang, J.;Farley, D. J. Med. Chem. 2009, 52, 3523. doi: 10.1021/jm801394m

    15. [15]

      (15) Gao, D. A.; Xiong, Z.; Heim-Riether, A.; Amodeo, L.; August,E. M.; Cao, X.; Ciccarelli, L.; Collins, B. K.; Harrington, K.;Haverty, K. Bioorg. Med. Chem. Lett. 2010, 20, 5039. doi: 10.1016/j.bmcl.2010.07.036

    16. [16]

      (16) Chen, J. M.; Nelson, F. C.; Levin, J. I.; Mobilio, D.; Moy, F. J.;Nilakantan, R.; Zask, A.; Powers, R. J. Am. Chem. Soc. 2000,122, 9648. doi: 10.1021/ja001547g

    17. [17]

      (17) Natchus, M. G.; Bookland, R. G.; De, B.; Almstead, N. G.;Pikul, S.; Janusz, M. J.; Heitmeyer, S. A.; Hookfin, E. B.;Hsieh, L. C.; Dowty, M. E. J. Med. Chem. 2000, 43, 4948. doi: 10.1021/jm000246e

    18. [18]

      (18) O′Brien, P. M.; Ortwine, D. F.; Pavlovsky, A. G.; Picard, J. A.;Sliskovic, D. R.; Roth, B. D.; Dyer, R. D.; Johnson, L. L.; Man,C. F.; Hallak, H. J. Med. Chem. 2000, 43, 156. doi: 10.1021/jm9903141

    19. [19]

      (19) Barta, T. E.; Becker, D. P.; Bedell, L. J.; De Crescenzo, G. A.;McDonald, J. J.; Mehta, P.; Munie, G. E.; Villamil, C. I. Bioorg. Med. Chem. Lett. 2001, 11, 2481. doi: 10.1016/S0960-894X(01)00487-5

    20. [20]

      (20) Becker, D. P.; Barta, T. E.; Bedell, L.; DeCrescenzo, G.;Freskos, J.; Getman, D. P.; Hockerman, S. L.; Li, M.; Mehta, P.;Mischke, B. Bioorg. Med. Chem. Lett. 2001, 11, 2719. doi: 10.1016/S0960-894X(01)00556-X

    21. [21]

      (21) Becker, D. P.; DeCrescenzo, G.; Freskos, J.; Getman, D. P.;Hockerman, S. L.; Li, M.; Mehta, P.; Munie, G. E.; Swearingen,C. Bioorg. Med. Chem. Lett. 2001, 11, 2723. doi: 10.1016/S0960-894X(01)00557-1

    22. [22]

      (22) Aranapakam, V.; Davis, J. M.; Grosu, G. T.; Baker, J.;Ellingboe, J.; Zask, A.; Levin, J. I.; Sandanayaka, V. P.; Du, M.;Skotnicki, J. S. J. Med. Chem. 2003, 46, 2376. doi: 10.1021/jm0205550

    23. [23]

      (23) Reiter, L. A.; Robinson, R. P.; McClure, K. F.; Jones, C. S.;Reese, M. R.; Mitchell, P. G.; Otterness, I. G.; Bliven, M. L.;Liras, J.; Cortina, S. R. Bioorg. Med. Chem. Lett. 2004, 14,3389. doi: 10.1016/j.bmcl.2004.04.083

    24. [24]

      (24) Becker, D. P.; Barta, T. E.; Bedell, L. J.; Boehm, T. L.; Bond, B.R.; Carroll, J.; Carron, C. P.; DeCrescenzo, G. A.; Easton, A.M.; Freskos, J. N. J. Med. Chem. 2010, 53, 6653. doi: 10.1021/jm100669j

    25. [25]

      (25) Bikádi, Z.; Hazai, E.; Zsila, F.; Lockwood, S. F. Biorg. Med. Chem. 2006, 14, 5451. doi: 10.1016/j.bmc.2006.04.047

    26. [26]

      (26) La Pietra, V.; Marinelli, L.; Cosconati, S.; Di Leva, F. S.; Nuti,E.; Santamaria, S.; Pugliesi, I.; Morelli, M.; Casalini, F.;Rossello, A. Eur. J. Med. Chem. 2012, 47, 143. doi: 10.1016/j.ejmech.2011.10.035

    27. [27]

      (27) Levin, J. I.; DiJoseph, J. F.; Killar, L. M.; Sung, A.;Walter, T.;Sharr, M. A.; Roth, C. E.; Skotnicki, J. S.; Albright, J. D.Bioorg. Med. Chem. Lett. 1998, 8, 2657. doi: 10.1016/S0960-894X(98)00473-9

    28. [28]

      (28) Martin, F. M.; Beckett, R. P.; Bellamy, C. L.; Courtney, P. F.;Davies, S. J.; Drummond, A. H.; Dodd, R.; Pratt, L. M.; Patel,S. R.; Ricketts, M. L. Bioorg. Med. Chem. Lett. 1999, 9,2887. doi: 10.1016/S0960-894X(99)00494-1

    29. [29]

      (29) Cheng, M.; De, B.; Pikul, S.; Almstead, N. G.; Natchus, M. G.;Anastasio, M. V.; McPhail, S. J.; Snider, C. E.; Taiwo, Y. O.;Chen, L. J. Med. Chem. 2000, 43, 369. doi: 10.1021/jm990366q

    30. [30]

      (30) Barta, T. E.; Becker, D. P.; Bedell, L. J.; De Crescenzo, G. A.;McDonald, J. J.; Munie, G. E.; Rao, S.; Shieh, H. S.; Stegeman,R.; Stevens, A. M.; Villamil, C. I. Bioorg. Med. Chem. Lett.2000, 10, 2815. doi: 10.1016/S0960-894X(00)00584-9

    31. [31]

      (31) Levin, J.; Chen, J.; Du, M.; Hogan, M.; Kincaid, S.; Nelson, F.;Venkatesan, A.;Wehr, T.; Zask, A.; DiJoseph, J. Bioorg. Med. Chem. Lett. 2001, 11, 2189. doi: 10.1016/S0960-894X(01)00419-X

    32. [32]

      (32) Levin, J.; Chen, J.; Cheung, K.; Cole, D.; Cra , C.; Santos, E.;Du, X.; Khafizova, G.; MacEwan, G.; Niu, C. Bioorg. Med. Chem. Lett. 2003, 13, 2799. doi: 10.1016/S0960-894X(03)00514-6

    33. [33]

      (33) Zask, A.; Gu, Y.; Albright, J.; Du, X.; Hogan, M.; Levin, J.;Chen, J.; Killar, L.; Sung, A.; DiJoseph, J. Bioorg. Med. Chem. Lett. 2003, 13, 1487. doi: 10.1016/S0960-894X(03)00127-6

    34. [34]

      (34) Gupta, S.; Kumaran, S. Bioorg. Med. Chem. 2005, 13,5454. doi: 10.1016/j.bmc.2005.05.055

    35. [35]

      (35) Gupta, S.; Kumaran, S. Letters in Drug Design & Discovery2005, 2, 522. doi: 10.2174/157018005774479096

    36. [36]

      (36) Gupta, S.; Kumaran, S. Med. Chem. 2006, 2, 243. doi: 10.2174/157340606776930790

    37. [37]

      (37) Gupta, S.; Kumaran, S. Asian J. Biochem. 2006, 1, 211. doi: 10.3923/ajb.2006.211.223

    38. [38]

      (38) Kumaran, S.; Gupta, S. J. Enzyme Inhib. Med. Chem. 2007, 22,23. doi: 10.1080/14756360600956655

    39. [39]

      (39) Verma, R. P.; Hansch, C. Biorg. Med. Chem. 2007, 15, 2223.doi: 10.1016/j.bmc.2007.01.011

    40. [40]

      (40) Sarma, J.; Rambabu, G.; Srikanth, K.; Raveendra, D.; Vithal, M.Bioorg. Med. Chem. Lett. 2002, 12, 2689. doi: 10.1016/S0960-894X(02)00559-0

    41. [41]

      (41) Xue, Y.; Li, H.; Ung, C.; Yap, C.; Chen, Y. Chem. Res. Toxicol.2006, 19, 1030. doi: 10.1021/tx0600550

    42. [42]

      (42) Luan, F.; Liu, H.; Ma,W.; Fan, B. Eur. J. Med. Chem. 2008, 43,43. doi: 10.1016/j.ejmech.2007.03.002

    43. [43]

      (43) Lv,W.; Xue, Y. Acta Phys. -Chim. Sin. 2010, 26, 471. [吕巍, 薛英. 物理化学学报, 2010, 26, 471.] doi: 10.3866/PKU.WHXB20100125

    44. [44]

      (44) Li, B. K.; Cong, Y.; Yang, X. G.; Xue, Y.; Chen, Y. Z. Comput. Biol. Med. 2013, 43, 395.

    45. [45]

      (45) Katritzky, A. R.; rdeeva, E. V. J. Chem. Inf. Comput. Sci.1993, 33, 835. doi: 10.1021/ci00016a005

    46. [46]

      (46) Karelson, M.; Lobanov, V. S.; Katritzky, A. R. Chem. Rev. 1996,96, 1027. doi: 10.1021/cr950202r

    47. [47]

      (47) Kier, L. B.; Hall, L. H. Molecular Structure Description: the Electrotopological State; Academic Press: London, 1999.

    48. [48]

      (48) Todeschini, R.; Consonni, V.; Tayar, N. E.; Testa, B.; Carrupt, P.A. J. Phys. Chem 1992, 96, 1455.

    49. [49]

      (49) Yang, X. G.; Chen, D.;Wang, M.; Xue, Y.; Chen, Y. Z.J. Comput. Chem. 2009, 30, 1202. doi: 10.1002/jcc.v30:8

    50. [50]

      (50) Cheng, M.; De, B.; Almstead, N. G.; Pikul, S.; Dowty, M. E.;Dietsch, C. R.; Dunaway, C. M.; Gu, F.; Hsieh, L. C.; Janusz,M. J. J. Med. Chem. 1999, 42, 5426. doi: 10.1021/jm9904699

    51. [51]

      (51) Freskos, J. N.; Mischke, B. V.; DeCrescenzo, G. A.; Heintz, R.;Getman, D. P.; Howard, S. C.; Kishore, N. N.; McDonald, J. J.;Munie, G. E.; Rangwala, S. Bioorg. Med. Chem. Lett. 1999, 9,943. doi: 10.1016/S0960-894X(99)00116-X

    52. [52]

      (52) Levin, J.; Chen, J.; Du, M.; Nelson, F.;Wehr, T.; DiJoseph, J.;Killar, L.; Skala, S.; Sung, A.; Sharr, M. Bioorg. Med. Chem. Lett. 2001, 11, 2975. doi: 10.1016/S0960-894X(01)00601-1

    53. [53]

      (53) Natchus, M. G.; Bookland, R. G.; Laufersweiler, M. J.; Pikul,S.; Almstead, N. G.; De, B.; Janusz, M. J.; Hsieh, L. C.; Gu, F.;Pokross, M. E. J. Med. Chem. 2001, 44, 1060. doi: 10.1021/jm000477l

    54. [54]

      (54) Pikul, S.; Dunham, K. M.; Almstead, N. G.; De, B.; Natchus, M.G.; Taiwo, Y. O.;Williams, L. E.; Hynd, B. A.; Hsieh, L. C.;Janusz, M. J. Bioorg. Med. Chem. Lett. 2001, 11, 1009. doi: 10.1016/S0960-894X(01)00137-8

    55. [55]

      (55) Pikul, S.; Ohler, N. E.; Ciszewski, G.; Laufersweiler, M. C.;Almstead, N. G.; De, B.; Natchus, M. G.; Hsieh, L. C.; Janusz,M. J.; Peng, S. X. J. Med. Chem. 2001, 44, 2499. doi: 10.1021/jm015531s

    56. [56]

      (56) Tullis, J. S.; Laufersweiler, M. J.; VanRens, J. C.; Natchus, M.G.; Bookland, R. G.; Almstead, N. G.; Pikul, S.; De, B.; Hsieh,L. C.; Janusz, M. J. Bioorg. Med. Chem. Lett. 2001, 11, 1975.doi: 10.1016/S0960-894X(01)00371-7

    57. [57]

      (57) Le Diguarher, T.; Chollet, A. M.; Bertrand, M.; Hennig, P.;Raimbaud, E.; Sabatini, M.; Guilbaud, N.; Pierré, A.; Tucker, G.C.; Casara, P. J. Med. Chem. 2003, 46, 3840. doi: 10.1021/jm0307638

    58. [58]

      (58) Biasone, A.; Tortorella, P.; Campestre, C.; Agamennone, M.;Preziuso, S.; Chiappini, M.; Nuti, E.; Carelli, P.; Rossello, A.;Mazza, F. Biorg. Med. Chem. 2007, 15, 791. doi: 10.1016/j.bmc.2006.10.047

    59. [59]

      (59) Nuti, E.; Panelli, L.; Casalini, F.; Avramova, S. I.; Orlandini, E.;Santamaria, S.; Nencetti, S.; Tuccinardi, T.; Martinelli, A.;Cercignani, G. J. Med. Chem. 2009, 52, 6347. doi: 10.1021/jm900335a

    60. [60]

      (60) Chollet, A. M.; Le Diguarher, T.; Kucharczyk, N.; Loynel, A.;Bertrand, M.; Tucker, G.; Guilbaud, N.; Burbridge, M.;Pastoureau, P.; Fradin, A. Biorg. Med. Chem. 2002, 10, 531. doi: 10.1016/S0968-0896(01)00311-X

    61. [61]

      (61) Li, J. J.; Johnson, A. R. Med. Res. Rev. 2011, 31, 863. doi: 10.1002/med.v31.6

    62. [62]

      (62) Duda, R. O.; Hart, P. E.; Stork, D. G. Pattern Classification and Scene Analysis: Part I Pattern Classification;Wiley: New York,1995.

    63. [63]

      (63) Handbook of Molecular Descriptors: Methods and Principles in Medicinal Chemistry;Wiley-VCH: New York, 2000; Vol. 11.

    64. [64]

      (64) Vladimir, V. N.; Vapnik, V. The Nature of Statistical Learning Theory; Springer: Heidelberg, 1995.

    65. [65]

      (65) Burges, C. J. Data Mining and Knowledge Discovery 1998, 2,121. doi: 10.1023/A:1009715923555

    66. [66]

      (66) Doucet, J. P.; Barbault, F.; Xia, H.; Panaye, A.; Fan, B. Curr. Comput. Aided Drug Des. 2007, 3, 263. doi: 10.2174/157340907782799372

    67. [67]

      (67) Breiman, L. Mach. Learn. 2001, 45, 5. doi: 10.1023/A:1010933404324

    68. [68]

      (68) Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R.P.; Feuston, B. P. J. Chem. Inf. Comput. Sci. 2003, 43, 1947.doi: 10.1021/ci034160g

    69. [69]

      (69) Li, S.; Fedorowicz, A.; Singh, H.; Soderholm, S. C. J. Chem. Inf. Model. 2005, 45, 952. doi: 10.1021/ci050049u

    70. [70]

      (70) Khandelwal, A.; Krasowski, M. D.; Reschly, E. J.; Sinz, M.W.;Swaan, P.W.; Ekins, S. Chem. Res. Toxicol. 2008, 21, 1457.doi: 10.1021/tx800102e

    71. [71]

      (71) Furey, T. S.; Cristianini, N.; Duffy, N.; Bednarski, D.W.;Schummer, M.; Haussler, D. Bioinformatics 2000, 16, 906. doi: 10.1093/bioinformatics/16.10.906

    72. [72]

      (72) Degroeve, S.; De Baets, B.; Van de Peer, Y.; Rouzé, P.Bioinformatics 2002, 18, S75.

    73. [73]

      (73) Guyon, I.;Weston, J.; Barnhill, S.; Vapnik, V. Mach. Learn.2002, 46, 389. doi: 10.1023/A:1012487302797

    74. [74]

      (74) Yu, H.; Yang, J.;Wang,W.; Han, J. Bioinformatics Conference,2003. CSB 2003. Proceedings of the 2003 IEEE, 2003.

    75. [75]

      (75) Matthews, B.W. Biochimica et Biophysica Acta (BBA)-Protein Structure 1975, 405, 442. doi: 10.1016/0005-2795(75)90109-9

    76. [76]

      (76) Perez, J. J. Chem. Soc. Rev. 2005, 34, 143. doi: 10.1039/b209064n

    77. [77]

      (77) Willett, P.;Winterman, V. Quantitative Structure-Activity Relationships 1986, 5, 18. doi: 10.1002/qsar.v5:1

    78. [78]

      (78) Willett, P.; Barnard, J. M.; Downs, G. M. J. Chem. Inf. Comput. Sci. 1998, 38, 983. doi: 10.1021/ci9800211

    79. [79]

      (79) Li, H.; Ung, C.; Yap, C.; Xue, Y.; Li, Z.; Chen, Y. J. Mol. Graph. Modell 2006, 25, 313. doi: 10.1016/j.jmgm.2006.01.007

    80. [80]

      (80) Ung, C. Y.; Li, H.; Yap, C.W.; Chen, Y. Z. Mol. Pharmacol.2007, 71, 158.

    81. [81]

      (81) Breiman, L.; Cutler, A. Random Forests, version 5.1;  http://statwww.berkeley.edu/users/breiman/RandomForests/cc_home.htm.

    82. [82]

      (82) Yang, X. G.; Lv,W.; Chen, Y. Z.; Xue, Y. J. Comput. Chem.2010, 31, 1249.

    83. [83]

      (83) Cong, Y.; Yang, X.; Lv,W.; Xue, Y. J. Mol. Graph. Model. 2009,28, 236. doi: 10.1016/j.jmgm.2009.08.001


  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    6. [6]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    9. [9]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    16. [16]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

    17. [17]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Hui Liu Shupeng Zhang Yuntian Zhang Wei Dong Yuji Liu Bingxin Deng Dongping Chen Yongxing Tang . Research on the Application of Virtual Reality (VR) Technology in the Teaching of Organic Chemistry. University Chemistry, 2024, 39(8): 64-71. doi: 10.3866/PKU.DXHX202312028

    20. [20]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

Metrics
  • PDF Downloads(561)
  • Abstract views(951)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return