Citation: LI Ling-Liang, ZHANG Fu-Jun, WANG Zi-Xuan, AN Qiao-Shi, WANG Jian, XU Zheng. Organic Visible-Blind Ultraviolet Photodetectors Based on Rare Earth Complex[J]. Acta Physico-Chimica Sinica, ;2013, 29(12): 2624-2629. doi: 10.3866/PKU.WHXB201310301 shu

Organic Visible-Blind Ultraviolet Photodetectors Based on Rare Earth Complex

  • Received Date: 29 July 2013
    Available Online: 30 October 2013

    Fund Project: 高等学校基本科研业务基金(2013JBZ004) (2013JBZ004) 北京市自然科学基金(2122050) (2122050)国家自然科学基金(613770029)资助项目 (613770029)

  • Anew type of organic visible-blind ultraviolet (UV) photodetector based on tri(dibenzoylmethane)(4, 7-biphenyl-1,10-phenanthroline)europium (Ⅲ) [Eu(DBM)3BPhen] as an electron donor and [6,6]-phenyl-C-61-butyric acid methyl ester ([60]PCBM) as an electron acceptor was fabricated. A peak response of 26 mA·W-1 and external quantum efficiency of 9.1% were obtained under illumination with 360 nm UV light at 2.1 mW·cm-2. This was because of the high UV absorption of Eu(DBM)3BPhen and the long lifetime, 300 μs, of Eu3+ ions, resulting in high exciton dissociation efficiency. Distinct photoluminescence quenching and photoconductivity of Eu(DBM)3BPhen were obtained by doping with [60]PCBM. A strong persistent photoconductivity was observed, which could be attributed to low charge carrier transportation and slow release of trapped exciton states in the blend films after the UV light is turned off.


    1. [1]

      (1) Forrest, S. R. Nature 2004, 428, 911. doi: 10.1038/nature02498

    2. [2]

      (2) ng, X. O.; Tong, M. H.; Park, S. H.; Liu, M.; Jen, A.; Heeger,A. J. Sensors 2010, 10, 6488. doi: 10.3390/s100706488

    3. [3]

      (3) Wu, S. H.; Li,W. L.; Chu, B.; Lee, C. S.; Su, Z. S.;Wang, J. B.;Ren, Q. J.; Hu, Z. Z.; Zhang, Z. Q. Appl. Phys. Lett. 2010, 97,023306. doi: 10.1063/1.3463483

    4. [4]

      (4) Zhu, L.; Dai, Q.; Hu, Z. F.; Zhang, X. Q.;Wang, Y. S. Opt. Lett.2011, 36, 1821. doi: 10.1364/OL.36.001821

    5. [5]

      (5) Zhu, L.;Wang,W. S.; Yao, Z. G.; Zhang, X. Q.;Wang, Y. S.IEEE Trans. Electron Devices 2012, 59, 3583. doi: 10.1109/TED.2012.2219864

    6. [6]

      (6) Zhang, J. L.; Nan, Y. X.; Li, H. G.; Qiu,W. M.; Yang, X.;Wu,G.; Chen, H. Z.;Wang, M. Sensors and Actuators B: Chemical2012, 162, 321. doi: 10.1016/j.snb.2011.12.088

    7. [7]

      (7) Kalyani, N. T.; Dhoble, S. J. Renewable & Sustainable Energy Reviews 2012, 16, 2696. doi: 10.1016/j.rser.2012.02.021

    8. [8]

      (8) Canzler, T.W.; Kido, J. Org. Electron 2006, 7, 29. doi: 10.1016/j.orgel.2005.10.004

    9. [9]

      (9) Zhang, F. J.; Zhuo, Z. L.; Zhang, J.;Wang, X.; Xu, X.W.;Wang, Z. X.; Xin, Y. S.;Wang, J.;Wang, J.; Tang,W. H.; Xu, Z.;Wang, Y. S. Solar Energy Materials and Solar Cells 2012, 97,71. doi: 10.1016/j.solmat.2011.09.006

    10. [10]

      (10) Zhang, F. J.; Xu, X.W.; Tang,W. H.; Zhang, J.; Zhuo, Z. L.;Wang, J.;Wang, J.; Xu, Z.;Wang, Y. S. Solar Energy Materials and Solar Cells 2011, 95, 1785. doi: 10.1016/j.solmat.2011.02.002

    11. [11]

      (11) Zhuo, Z. L.; Zhang, F. J.; Lv, Y. G.; Xu, Z.; Lu, L. F.; Li, J. M.;Wang, Y. S. Phys. Scr. 2010, 82, 055703. doi: 10.1088/0031-8949/82/05/055703

    12. [12]

      (12) Li, B.; Ma, D. G.; Zhang, H. J.; Zhao, X. J.; Ni, J. Z. Acta Phys. -Chim. Sin. 1998, 14, 305. [李斌, 马东阁, 张洪杰,赵晓江, 倪嘉缵. 物理化学学报, 1998, 14, 305.] doi: 10.3866/PKU.WHXB19980404

    13. [13]

      (13) Huang, L.; Cheng, L.; Yu, H.; Zhou, L.; Sun, J.; Zhong, H.; Li,X.; Zhang, J.; Tian, Y.; Zheng, Y.; Yu, T.;Wang, J.; Chen, B.Physica B: Condensed Matter 2011, 406, 2745. doi: 10.1016/j.physb.2011.04.019

    14. [14]

      (14) Huang, L.; Cheng, L.; Yu, H.; Zhang, J.; Zhou, L.; Sun, J.;Zhong, H.; Li, X.; Tian, Y.; Zheng, Y.; Yu, T.; Li, C.; Zhong, H.;Liu,W.; Zhang, L.;Wang, J.; Chen, B. Opt. Commun. 2012,285, 1476. doi: 10.1016/j.optcom.2011.10.006

    15. [15]

      (15) Zhuo, Z. L.; Zhang, F. J.; Xu, X.W.;Wang, J.; Lu, L. F.; Xu, Z.Acta Phys. -Chim. Sin. 2011, 27, 875. [卓祖亮, 张福俊, 许晓伟, 王健, 卢丽芳, 徐征. 物理化学学报, 2011, 27, 875.]doi: 10.3866/PKU.WHXB20110414

    16. [16]

      (16) Kajii, H.; Katsura, A.; Ohmori, H.; Sato, Y.; Hamasaki, T.;Ohmori, Y. J. Non-Cryst. Solids 2012, 358, 2504. doi: 10.1016/j.jnoncrysol.2011.12.097

    17. [17]

      (17) Li, Y. F. Accounts of Chemical Research 2012, 45, 723. doi: 10.1021/ar2002446

    18. [18]

      (18) Cai, S.; Parish, G.; Dell, J. M.; Nener, B. D. J. Appl. Phys. 2004,96, 1019.

    19. [19]

      (19) Verbakel, F.; Meskers, S. C. J.; Janssen, R. A. J. Appl. Phys. Lett. 2006, 89, 102103. doi: 10.1063/1.2345612

    20. [20]

      (20) Reyes, P. I.; Ku, C. J.; Duan, Z. Q.; Xu, Y.; Garfunkel, E.; Lu, Y.C. Appl. Phys. Lett. 2012, 101, 031118. doi: 10.1063/1.4737648

    21. [21]

      (21) Dasgupta, S.; Knaak, C.; Moser, J.; Bichler, M.; Roth, S. F.;Morral, A. F. I.; Abstreiter, G.; Grayson, M. Appl. Phys. Lett.2007, 91, 142120. doi: 10.1063/1.2794012

    22. [22]

      (22) Hirsch, M. L. T.;Wolk, J. A.;Walukiewicz,W.; Haller, E. E.Appl. Phys. Lett. 1997, 71, 1098. doi: 10.1063/1.119738

    23. [23]

      (23) Kim, C. H.; Kisiel, K.; Jung, J.; Ulanski, J.; Tondelier, D.;Geffroy, B.; Bonnassieux, Y.; Horowitz, G. Synth. Met. 2012,162, 460. doi: 10.1016/j.synthmet.2011.12.021

    24. [24]

      (24) Nardes, A. M.; Ferguson, A. J.; Whitaker, J. B.; Larson, B.W.;Larsen, R. E.; Maturová, K.; Graf, P. A.; Boltalina, O. V.;Strauss, S. H.; Kopidakis, N. Adv. Funct. Mater. 2012, 22,4115. doi: 10.1002/adfm.v22.19

    25. [25]

      (25) Kim, C. H.; Choi, M. H.; Lee, S. H.; Jang, J.; Kirchmeyer, S.Appl. Phys. Lett. 2010, 96, 123301. doi: 10.1063/1.3372619

    26. [26]

      (26) Li, L.; Zhang, F.; An, Q.;Wang, Z.;Wang, J.; Tang, A.; Peng,H.; Xu, Z.;Wang, Y. Opt. Lett. 2013, 38, 3823. doi: 10.1364/OL.38.003823


    1. [1]

      (1) Forrest, S. R. Nature 2004, 428, 911. doi: 10.1038/nature02498

    2. [2]

      (2) ng, X. O.; Tong, M. H.; Park, S. H.; Liu, M.; Jen, A.; Heeger,A. J. Sensors 2010, 10, 6488. doi: 10.3390/s100706488

    3. [3]

      (3) Wu, S. H.; Li,W. L.; Chu, B.; Lee, C. S.; Su, Z. S.;Wang, J. B.;Ren, Q. J.; Hu, Z. Z.; Zhang, Z. Q. Appl. Phys. Lett. 2010, 97,023306. doi: 10.1063/1.3463483

    4. [4]

      (4) Zhu, L.; Dai, Q.; Hu, Z. F.; Zhang, X. Q.;Wang, Y. S. Opt. Lett.2011, 36, 1821. doi: 10.1364/OL.36.001821

    5. [5]

      (5) Zhu, L.;Wang,W. S.; Yao, Z. G.; Zhang, X. Q.;Wang, Y. S.IEEE Trans. Electron Devices 2012, 59, 3583. doi: 10.1109/TED.2012.2219864

    6. [6]

      (6) Zhang, J. L.; Nan, Y. X.; Li, H. G.; Qiu,W. M.; Yang, X.;Wu,G.; Chen, H. Z.;Wang, M. Sensors and Actuators B: Chemical2012, 162, 321. doi: 10.1016/j.snb.2011.12.088

    7. [7]

      (7) Kalyani, N. T.; Dhoble, S. J. Renewable & Sustainable Energy Reviews 2012, 16, 2696. doi: 10.1016/j.rser.2012.02.021

    8. [8]

      (8) Canzler, T.W.; Kido, J. Org. Electron 2006, 7, 29. doi: 10.1016/j.orgel.2005.10.004

    9. [9]

      (9) Zhang, F. J.; Zhuo, Z. L.; Zhang, J.;Wang, X.; Xu, X.W.;Wang, Z. X.; Xin, Y. S.;Wang, J.;Wang, J.; Tang,W. H.; Xu, Z.;Wang, Y. S. Solar Energy Materials and Solar Cells 2012, 97,71. doi: 10.1016/j.solmat.2011.09.006

    10. [10]

      (10) Zhang, F. J.; Xu, X.W.; Tang,W. H.; Zhang, J.; Zhuo, Z. L.;Wang, J.;Wang, J.; Xu, Z.;Wang, Y. S. Solar Energy Materials and Solar Cells 2011, 95, 1785. doi: 10.1016/j.solmat.2011.02.002

    11. [11]

      (11) Zhuo, Z. L.; Zhang, F. J.; Lv, Y. G.; Xu, Z.; Lu, L. F.; Li, J. M.;Wang, Y. S. Phys. Scr. 2010, 82, 055703. doi: 10.1088/0031-8949/82/05/055703

    12. [12]

      (12) Li, B.; Ma, D. G.; Zhang, H. J.; Zhao, X. J.; Ni, J. Z. Acta Phys. -Chim. Sin. 1998, 14, 305. [李斌, 马东阁, 张洪杰,赵晓江, 倪嘉缵. 物理化学学报, 1998, 14, 305.] doi: 10.3866/PKU.WHXB19980404

    13. [13]

      (13) Huang, L.; Cheng, L.; Yu, H.; Zhou, L.; Sun, J.; Zhong, H.; Li,X.; Zhang, J.; Tian, Y.; Zheng, Y.; Yu, T.;Wang, J.; Chen, B.Physica B: Condensed Matter 2011, 406, 2745. doi: 10.1016/j.physb.2011.04.019

    14. [14]

      (14) Huang, L.; Cheng, L.; Yu, H.; Zhang, J.; Zhou, L.; Sun, J.;Zhong, H.; Li, X.; Tian, Y.; Zheng, Y.; Yu, T.; Li, C.; Zhong, H.;Liu,W.; Zhang, L.;Wang, J.; Chen, B. Opt. Commun. 2012,285, 1476. doi: 10.1016/j.optcom.2011.10.006

    15. [15]

      (15) Zhuo, Z. L.; Zhang, F. J.; Xu, X.W.;Wang, J.; Lu, L. F.; Xu, Z.Acta Phys. -Chim. Sin. 2011, 27, 875. [卓祖亮, 张福俊, 许晓伟, 王健, 卢丽芳, 徐征. 物理化学学报, 2011, 27, 875.]doi: 10.3866/PKU.WHXB20110414

    16. [16]

      (16) Kajii, H.; Katsura, A.; Ohmori, H.; Sato, Y.; Hamasaki, T.;Ohmori, Y. J. Non-Cryst. Solids 2012, 358, 2504. doi: 10.1016/j.jnoncrysol.2011.12.097

    17. [17]

      (17) Li, Y. F. Accounts of Chemical Research 2012, 45, 723. doi: 10.1021/ar2002446

    18. [18]

      (18) Cai, S.; Parish, G.; Dell, J. M.; Nener, B. D. J. Appl. Phys. 2004,96, 1019.

    19. [19]

      (19) Verbakel, F.; Meskers, S. C. J.; Janssen, R. A. J. Appl. Phys. Lett. 2006, 89, 102103. doi: 10.1063/1.2345612

    20. [20]

      (20) Reyes, P. I.; Ku, C. J.; Duan, Z. Q.; Xu, Y.; Garfunkel, E.; Lu, Y.C. Appl. Phys. Lett. 2012, 101, 031118. doi: 10.1063/1.4737648

    21. [21]

      (21) Dasgupta, S.; Knaak, C.; Moser, J.; Bichler, M.; Roth, S. F.;Morral, A. F. I.; Abstreiter, G.; Grayson, M. Appl. Phys. Lett.2007, 91, 142120. doi: 10.1063/1.2794012

    22. [22]

      (22) Hirsch, M. L. T.;Wolk, J. A.;Walukiewicz,W.; Haller, E. E.Appl. Phys. Lett. 1997, 71, 1098. doi: 10.1063/1.119738

    23. [23]

      (23) Kim, C. H.; Kisiel, K.; Jung, J.; Ulanski, J.; Tondelier, D.;Geffroy, B.; Bonnassieux, Y.; Horowitz, G. Synth. Met. 2012,162, 460. doi: 10.1016/j.synthmet.2011.12.021

    24. [24]

      (24) Nardes, A. M.; Ferguson, A. J.; Whitaker, J. B.; Larson, B.W.;Larsen, R. E.; Maturová, K.; Graf, P. A.; Boltalina, O. V.;Strauss, S. H.; Kopidakis, N. Adv. Funct. Mater. 2012, 22,4115. doi: 10.1002/adfm.v22.19

    25. [25]

      (25) Kim, C. H.; Choi, M. H.; Lee, S. H.; Jang, J.; Kirchmeyer, S.Appl. Phys. Lett. 2010, 96, 123301. doi: 10.1063/1.3372619

    26. [26]

      (26) Li, L.; Zhang, F.; An, Q.;Wang, Z.;Wang, J.; Tang, A.; Peng,H.; Xu, Z.;Wang, Y. Opt. Lett. 2013, 38, 3823. doi: 10.1364/OL.38.003823


  • 加载中
    1. [1]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    2. [2]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    3. [3]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    4. [4]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    7. [7]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    8. [8]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    9. [9]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    10. [10]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    11. [11]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    12. [12]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    13. [13]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    14. [14]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    15. [15]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

Metrics
  • PDF Downloads(645)
  • Abstract views(840)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return