Citation: LIU Shuai, LI Shu-Shi, LIU Dong-Jia, WANG Chang-Sheng. Site Preferences of Adenine Hydrogen Bonding to Peptide Amides[J]. Acta Physico-Chimica Sinica, ;2013, 29(12): 2551-2557. doi: 10.3866/PKU.WHXB201310293
-
A detailed understanding of how nucleobases interact with protein peptides will allow us to gain valuable insights into how these interesting biological molecules could be used to construct complex nanostructures and materials. In this work, the optimal structures and binding energies of 20 hydrogenbonded complexes, which contained the nucleic acid base adenine, N-methylacetamide, a glycine dipeptide, and an alanine dipeptide, were obtained. The site preferences of adenine hydrogen bonding to peptide amides were explored. The calculation results show that adenine can use two binding sites (site A1 and site A2) to form N―H…N or N―H…O=C hydrogen-bonded complexes with N-methylacetamide; the N―H…N hydrogen-bonded complexes formed at site A1 of adenine are more stable. The calculation results also show that the glycine dipeptide can use either site Gly7 or site Gly5, and the alanine dipeptide can use either site Ala7 or site Ala5 to form hydrogen-bonded complexes with adenine; the hydrogenbonded complexes formed at site Gly7 of the glycine dipeptide and at site Ala7 of the alanine dipeptide are more stable. The hydrogen-bonded complexes formed by adenine and a dipeptide have larger negative binding energies than the complexes formed by adenine and N-methylacetamide, indicating that the interaction between adenine and the peptide is preferred to that between adenine and N-methylacetamide. The nature of the hydrogen bonding in these complexes was further explored based on the atoms in molecules calculations and the natural bond orbital analysis.
-
-
[1]
(1) Hobza, P.; Sponer, J. Chem. Rev. 1999, 99, 3247. doi: 10.1021/cr9800255
-
[2]
(2) Kennedy, R. J.; Tsang, K. Y.; Kemp, D. S. J. Am. Chem. Soc.2002, 124, 934. doi: 10.1021/ja016285c
-
[3]
(3) Jones, S.; Heyningen, P.; Berman, H. M.; Thornton, J. M. J. Mol. Biol. 1999, 287, 877. doi: 10.1006/jmbi.1999.2659
-
[4]
(4) Mukherjee, S.; Majumdar, M.; Bhattacharyya, D. J. Phys. Chem. B 2005, 109, 10484. doi: 10.1021/jp0446231
-
[5]
(5) Gu, J.;Wang, J.; Leszczynski, J. J. Phys. Chem. B 2006, 110,13590. doi: 10.1021/jp061360x
-
[6]
(6) Cheng, A. C.; Chen,W.W.; Fuhrmann, C. N.; Frankel, A. D. J. Mol. Biol. 2003, 327, 781. doi: 10.1016/S0022-2836(03)00091-3
-
[7]
(7) Allers, J.; Shamoo, Y. J. Mol. Biol. 2001, 311, 75. doi: 10.1006/jmbi.2001.4857
-
[8]
(8) Rutledge, L. R.; Campbell-Verduyn, L. S.; Hunter, K. C.;Wetmore, S. D. J. Phys. Chem. B 2006, 110, 19652. doi: 10.1021/jp061939v
-
[9]
(9) Ma, G. Z.; Qiu, Y. F.; Nan, J. M.; Xiao, X. Acta Phys. -Chim. Sin. 2008, 24, 1917. [马国正, 求亚芳, 南俊民, 肖信. 物理化学学报, 2008, 24, 1917.] doi: 10.3866/PKU.WHXB20081031
-
[10]
(10) Fan, D.; Liu, Z. M.; Jin, H.W.; Zhang, L. R. Acta Phys. -Chim. Sin. 2011, 27, 1223. [樊迪, 刘振明, 金宏威, 张亮仁. 物理化学学报, 2011, 27, 1223.] doi: 10.3866/PKU.WHXB20110439
-
[11]
(11) Schyman, P.; Danielsson, J.; Pinak, M.; Laaksonen, A. J. Phys. Chem. A 2005, 109, 1713. doi: 10.1021/jp045686m
-
[12]
(12) Rutledge, L. R.; Churchill, C. D. M.;Wetmore, S. D. J. Phys. Chem. B 2010, 114, 3355.
-
[13]
(13) Leavens, F. M. V.; Churchill, C. D. M.;Wang, S.;Wetmore, S.D. J. Phys. Chem. B 2011, 115, 10990. doi: 10.1021/jp205424z
-
[14]
(14) Chocholousova, J.; Feig, M. J. Phys. Chem. B 2006, 110,17240. doi: 10.1021/jp0627675
-
[15]
(15) Qin, S.; Zhou, H. X. J. Phys. Chem. B 2008, 112, 5955. doi: 10.1021/jp075919k
-
[16]
(16) Rozas, I.; Alkorta, I.; Elguero, J. J. Phys. Chem. B 2004, 108,3335. doi: 10.1021/jp036901m
-
[17]
(17) Xu, B.; Schones, D. E.;Wang, Y.; Liang, H.; Li, G. PLoS ONE2013, 8, e52460.
-
[18]
(18) Zhang, Y.; Shen, H.; Zhang, M.; Li, G. J. Phys. Chem. B 2013,117, 982. doi: 10.1021/jp309682t
-
[19]
(19) Shen, H.; Sun, H.; Li, G. PLoS Comput. Biol. 2010, 8, e1002851.
-
[20]
(20) Galetich, I.; Stepanian, S. J.; Shelkovsky, V.; Kosevich, M.;Bla i, Y. P.; Adamowicz, L. J. Phys. Chem. A 2000, 104,8965. doi: 10.1021/jp000755s
-
[21]
(21) Alkorta, I.; Elguero, J. J. Phys. Chem. B 2003, 107, 5306.
-
[22]
(22) Lee, J.; Kim, J. S.; Seok, C. J. Phys. Chem. B 2010, 114,7662. doi: 10.1021/jp1017289
-
[23]
(23) Rutledge, L. R.; Navarro-Whyte, L.; Peterson, T. L.;Wetmore,S. D. J. Phys. Chem. A 2011, 115, 12646. doi: 10.1021/jp203248j
-
[24]
(24) Liu, D. J.;Wang, C. S. Acta Phys. -Chim. Sin. 2012, 28, 2809.[刘冬佳, 王长生. 物理化学学报, 2012, 28, 2809.] doi: 10.3866/PKU.WHXB201209263
-
[25]
(25) Li, Y.;Wang, C. S. Sci. China. Chem. 2011, 54, 1759. doi: 10.1007/s11426-011-4411-y
-
[26]
(26) Li,Y.; Jiang, X. N.;Wang, C. S. J. Comput. Chem. 2011, 32,953. doi: 10.1002/jcc.v32.5
-
[27]
(27) Li,Y.;Wang, C. S. J. Comput. Chem. 2011, 32, 2765. doi: 10.1002/jcc.v32.13
-
[28]
(28) Huang, C. Y.; Li, Y.;Wang, C. S. Sci. China. Chem. 2013, 56,238. doi: 10.1007/s11426-012-4715-6
-
[29]
(29) Wang, C. S.; Liu, P.; Yu, N. Acta Phys. -Chim. Sin. 2013, 29,1173. [王长生, 刘朋, 于楠. 物理化学学报, 2013, 29,1173.] doi: 10.3866/PKU.WHXB201303153
-
[30]
(30) Radoszkowicz, L.; Huppert, D.; Nachliel, E.; Gutman, M. J. Phys. Chem. A 2010, 114, 1017. doi: 10.1021/jp908766e
-
[31]
(31) Bhattacharyya, S.; Stankovich, M. T.; Truhlar, D. G.; Gao, J. L.J. Phys. Chem. A 2007, 111, 5729. doi: 10.1021/jp071526+
-
[32]
(32) Kuppuraj, G.; Sargsyan, K.; Hua, Y. H.; Merrill, A. R.; Lim, C.J. Phys. Chem. B 2011, 115, 7932. doi: 10.1021/jp1118663
-
[33]
(33) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision D.01; Gaussian Inc.:Wallingford, CT, 2004.
-
[34]
(34) Biegler, K. F.; Schonbohm, J.; Bayles, D. J. Comput. Chem.2001, 22, 545.
-
[35]
(35) Zhao, G. J.; Han, K. L. Accounts Chem. Res. 2012, 45, 404. doi: 10.1021/ar200135h
-
[36]
(36) Zhao, G. J.; Liu, J. Y.; Zhou, L. C.; Han, K. L. J. Phys. Chem. B2007, 111, 8940. doi: 10.1021/jp0734530
-
[37]
(37) Scheiner, S. J. Phys. Chem. B 2005, 109, 16132. doi: 10.1021/jp053416d
-
[38]
(38) Scheiner, S. J. Phys. Chem. B 2006, 110, 18670. doi: 10.1021/jp063225q
-
[1]
-
-
[1]
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
-
[2]
Yinglian LI , Chengcheng ZHANG , Xinyu ZHANG , Xinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087
-
[3]
Lirui Shen , Kun Liu , Ying Yang , Dongwan Li , Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035
-
[4]
Meiyu Lin , Yuxin Fang , Songzhang Shen , Yaqian Duan , Wenyi Liang , Chi Zhang , Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042
-
[5]
Feiyang Liu , Liuhong Song , Miaoyu Fu , Zhi Zheng , Gang Xie , Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037
-
[6]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[7]
Xiaofeng Xia , Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063
-
[8]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[9]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[10]
Xiuyun Wang , Jiashuo Cheng , Yiming Wang , Haoyu Wu , Yan Su , Yuzhuo Gao , Xiaoyu Liu , Mingyu Zhao , Chunyan Wang , Miao Cui , Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067
-
[11]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[12]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[13]
Zhanhong Tong , Xiaoyu Xie , Fangfang Chen . Appreciating Autumn Leaves: A Brief Analysis of the Causes behind “Frost Leaves Redder than February Flowers”. University Chemistry, 2024, 39(9): 183-188. doi: 10.12461/PKU.DXHX202404005
-
[14]
Jin Yan , Chengxia Tong , Yajie Li , Yue Gu , Xuejian Qu , Shigang Wei , Wanchun Zhu , Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008
-
[15]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[16]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[17]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[18]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[19]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
-
[20]
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
-
[1]
Metrics
- PDF Downloads(600)
- Abstract views(743)
- HTML views(16)