Citation: NING Ai-Min, MENG Lei, ZHAO Zhong-Lin, ZHENG Xian-Fu, WAN Xin-Sheng. Mechanism of Interaction between Bovine Serum Albumin and Sodium Dodecyl Sulfate[J]. Acta Physico-Chimica Sinica, ;2013, 29(12): 2639-2646. doi: 10.3866/PKU.WHXB201310281
-
The binding isotherms of the interaction between bovine serum albumin (BSA) and sodium dodecyl sulfate (SDS) were obtained using electromotive force measurements. Changes in the microenvironmental polarity of aromatic amino acid residues during the interaction were studied using fourth-derivative ultraviolet spectroscopy and fluorescence spectroscopy. The average number (v) of SDS molecules bound to BSA increased with increasing SDS concentration. The polarity of tryptophan (Trp) residues decreased gradually and then remained almost constant. The polarity of tyrosine residues increased significantly and then decreased a little. The polarity of phenylalanine residues increased very slightly. The results show that SDS molecules bind to BSA in the vicinity of Trp-213 when v gradually increases from 0 to 14. BSA unfolds from domain ⅡA, induced by SDS aggregates formed near Trp-213. The v value then increases rapidly as a result of positive cooperative binding. When the v value reaches about 302, saturation binding is achieved and the BSA conformation remains almost unchanged.
-
-
[1]
(1) Jones, M. N.; Skinner, H. A.; Tipping, E. Biochem. J. 1975, 147,229.
-
[2]
(2) Takeda, K.; Miura, M.; Takagi, T. J. Colloid Interface Sci. 1981,82, 38. doi: 10.1016/0021-9797(81)90121-1
-
[3]
(3) Dixit, N.; Zeng, D. L.; Kalonia, D. S. Int. J. Pharm. 2012, 439,317. doi: 10.1016/j.ijpharm.2012.09.013
-
[4]
(4) Ge, Y. S.; Tai, S. X.; Xu, Z. Q.; Lai, L.; Tian, F. F.; Li, D.W.;Jiang, F. L.; Liu, Y.; Gao, Z. N. Langmuir 2012, 28, 5913. doi: 10.1021/la204212s
-
[5]
(5) Pi, Y.; Shang, Y.; Peng, C.; Liu, H.; Hu, Y.; Jiang, J.Biopolymers 2006, 83, 243.
-
[6]
(6) De, S.; Giri swami, A.; Das, S. J. Colloid Interface Sci. 2005,285, 562. doi: 10.1016/j.jcis.2004.12.022
-
[7]
(7) Blanco, E.; Messina, P.; Ruso, J. M.; Prieto, G.; Sarmiento, F. J.Phys. Chem. B 2006, 110, 11369. doi: 10.1021/jp060795h
-
[8]
(8) Peyre, V.; Lair, V.; André, V.; Maire, G.; Kragh-Hansen, U.;Maire, M.; Møller, J. V. Langmuir 2005, 21, 8865. doi: 10.1021/la0507232
-
[9]
(9) Rafati, A. A.; Ghasemian, E. J. Mol. Liq. 2009, 144, 131. doi: 10.1016/j.molliq.2008.10.010
-
[10]
(10) Bordbarb, A. K.; Taheri-Kafrani, A. Colloids Surf. B 2007, 55,84. doi: 10.1016/j.colsurfb.2006.11.012
-
[11]
(11) Kurawaki, J.; Kusumoto, Y. J. Colloid Interface Sci. 2000, 225,265. doi: 10.1006/jcis.2000.6762
-
[12]
(12) Anand, U.; Jash, C.; Mukherjee, S. J. Phys. Chem. B 2010, 114,15839. doi: 10.1021/jp106703h
-
[13]
(13) Zhou, T.; Ao, M.; Xu, G.; Liu, T.; Zhang, J. J. Colloid InterfaceSci. 2013, 389, 175. doi: 10.1016/j.jcis.2012.08.067
-
[14]
(14) Singh, T.; Bharmoria, P.; Morikawa, M.; Kimizuka, N.; Kumar,A. J. Phys. Chem. B 2012, 116, 11924. doi: 10.1021/jp303609h
-
[15]
(15) Shu, Y.; Liu, M.; Chen, S.; Chen, X.;Wang, J. J. Phys. Chem. B2011, 115, 12306. doi: 10.1021/jp2071925
-
[16]
(16) Hu, M.;Wang, X.;Wang, H.; Chai, Y.; He, Y.; Song, G.Luminescence 2012, 27, 204. doi: 10.1002/bio.1333
-
[17]
(17) Paul, B. K.; Samanta, A.; Guchhait, N. J. Phys. Chem. B 2010,114, 6183. doi: 10.1021/jp100004t
-
[18]
(18) Chakraborty, T.; Chakraborty, I.; Moulik, S. P.; Ghosh, S.Langmuir 2009, 25, 3062. doi: 10.1021/la803797x
-
[19]
(19) Gelamo, E. L.; Silva, C. H. T. P.; Imasato, H.; Tabak, M.Biochim. Biophys. Acta 2002, 1594, 84. doi: 10.1016/S0167-4838(01)00287-4
-
[20]
(20) Das, S.; Sylvain, M. R.; Fernand, V. E.; Losso, J. N.; El-Zahab,B.;Warner, I. M. J. Colloid Interface Sci. 2011, 363, 585. doi: 10.1016/j.jcis.2011.07.044
-
[21]
(21) Deep, S.; Ahluwalia, J. C. Phys. Chem. Chem. Phys. 2001, 3,4583. doi: 10.1039/b105779k
-
[22]
(22) Li, Y.;Wang, X.;Wang, Y. J. Phys. Chem. B 2006, 110,8499. doi: 10.1021/jp060532n
-
[23]
(23) Wang, X.; Liu, J.; Sun, L.; Yu, L.; Jiao, J.;Wang, R. J. Phys.Chem. B 2012, 116, 12479. doi: 10.1021/jp307516a
-
[24]
(24) Turro, N. J.; Lei, X. G. Langmuir 1995, 11, 2525. doi: 10.1021/la00007a035
-
[25]
(25) Wu, D.; Xu, G.; Sun, Y.; Zhang, H.; Mao, H.; Feng, Y.Biomacromolecules 2007, 8, 708. doi: 10.1021/bm061033v
-
[26]
(26) Vasilescu, M.; Angelescu, D. Langmuir 1999, 15, 2635. doi: 10.1021/la981424y
-
[27]
(27) Su, R.; Qi,W.; He, Z.; Zhang, Y.; Jin, F. Food Hydrocolloids2008, 22, 995. doi: 10.1016/j.foodhyd.2007.05.021
-
[28]
(28) Chatani, E.; Nonomura, K.; Hayashi, R.; Balny, C.; Lange, R.Biochemistry 2002, 41, 4567. doi: 10.1021/bi011365e
-
[29]
(29) Fan, H.; Vitharana, S. N.; Chen, T.; O'Keefe, D.; Middaugh, C.R. Mol. Pharm. 2007, 4, 232. doi: 10.1021/mp060097h
-
[30]
(30) Webb, S. D.; Cleland, J. L.; Carpenter, J. F.; Randolph, T.W. J.Pharm. Sci. 2002, 91, 543.
-
[31]
(31) Zhang, Y.; Deng, Y.; Lu, M.; Craig, D. Q. M.; Li, Z. J. ColloidInterface Sci. 2009, 337, 322. doi: 10.1016/j.jcis.2009.05.056
-
[32]
(32) Lee, J.; Moroi, Y. Langmuir 2004, 20, 4376. doi: 10.1021/la030433q
-
[33]
(33) Wang, C.; Tam, K. C. J. Phys. Chem. B 2005, 109, 5156. doi: 10.1021/jp045468t
-
[34]
(34) Moriyama, Y.;Watanabe, E.; Kobayashi, K.; Harano, H.; Inui,E.; Takeda, K. J. Phys. Chem. B 2008, 112, 16585. doi: 10.1021/jp8067624
-
[35]
(35) Valstar, A.; Almgren, M.; Brown,W. Langmuir 2000, 16,922. doi: 10.1021/la990423i
-
[36]
(36) Ding, F.; Li, X. N.; Diao, J. X.; Sun, Y.; Zhang, L.; Sun, Y.Chirality 2012, 24, 471. doi: 10.1002/chir.v24.6
-
[37]
(37) He, X. M.; Carter, D. C. Nature 1992, 358, 209. doi: 10.1038/358209a0
-
[38]
(38) Bujacz, A. Acta Cryst. 2012, D68, 1278.
-
[39]
(39) Santos, S. F.; Zanette, D.; Fischer, H.; Itri, R. J. ColloidInterface Sci. 2003, 262, 400.
-
[1]
-
-
[1]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[2]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[3]
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
-
[4]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[5]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[6]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[7]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[8]
Gonglan Ye , Xia Yin , Feng Xu , Peng Yang , Yingpeng Wu , Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071
-
[9]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[10]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[11]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[12]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[13]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[14]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[15]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[16]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[17]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[18]
Nana Wang , Gaosheng Zhang , Huosheng Li , Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010
-
[19]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[20]
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
-
[1]
Metrics
- PDF Downloads(1122)
- Abstract views(835)
- HTML views(22)