Citation: YU Hai-Ling, ZHANG Meng-Ying, HONG Bo, CHENG Zhi Qiang, WANG Jiao, TIAN Dong-Mei, QIU Yong-Qing. Nonlinear Optical Properties of Green Fluorescent Protein Chromophore Coupled Diradicals[J]. Acta Physico-Chimica Sinica, ;2013, 29(12): 2543-2550. doi: 10.3866/PKU.WHXB201310232 shu

Nonlinear Optical Properties of Green Fluorescent Protein Chromophore Coupled Diradicals

  • Received Date: 29 July 2013
    Available Online: 23 October 2013

    Fund Project: 国家自然科学基金(21173035)资助项目 (21173035)

  • The geometries, polarizabilities (αs), and first hyperpolarizabilities (βtot) of a series of green fluorescent protein chromophore coupled diradicals and their corresponding optical isomers were investigated using density functional theory (DFT). The results show that the introductions of the electron donor/acceptor significantly enhance the polarizabilities and have a different influence on the first hyperpolarizabilities. For trans isomers, the βtot values of the studied compounds increase with increasing strength of the electron-withdrawing ability of the substituent, whereas the βtot values decrease significantly with increasing strength of the electron-donating ability of the substituent. For cis isomers, the trends in the changes in the βtot values are the opposite of those for trans isomers on introduction of a donor/acceptor. Significantly, photoisomerization can lead to the different βtot values. The βtot values of cis isomers are smaller than those of trans isomers when electron acceptors are introduced. For example, the βtot value of the cis isomer with the strongest electron acceptor, i.e., ―NO2, is about 1/6 that of the corresponding trans isomer. However, the βtot values of trans isomers are smaller than those of cis isomers when electron donors are introduced. For example, the βtot value of the trans isomer with the strongest electron donor, i.e., ―NH2, is about six times smaller than that of the corresponding cis isomer. As a result, photoisomerization can modulate the molecular nonlinear optical (NLO) responses effectively.

  • 加载中
    1. [1]

      (1) Nakano, M.; Yamaguchi, K. J. Chem. Phys. Lett. 1993, 206,285. doi: 10.1016/0009-2614(93)85553-Z

    2. [2]

      (2) Ma, N. N.; Sun, S. L.; Liu, C. G.; Sun, X. X.; Qiu, Y. Q. J. Phys. Chem. A 2011, 115, 13564. doi: 10.1021/jp206003n

    3. [3]

      (3) Sun, X. X.; Liu, Y.; Zhao, H. B.; Sun, S. L.; Liu, C. G.; Qiu, Y.Q. Acta Phys. -Chim. Sin. 2011, 27, 315. [孙秀欣, 刘艳, 赵海波, 孙世玲, 刘春光, 仇永清. 物理化学学报, 2011, 27, 315.]doi: 10.3866/PKU.WHXB20110236

    4. [4]

      (4) Liu, C. G.; Guan, X. H.; Su, Z. M. J. Phys. Chem. C 2011, 115,6024. doi: 10.1021/jp111797n

    5. [5]

      (5) Nakano, M.; Nagao, H.; Yamaguchi, K. Chem. Phys. Lett. 1999,311, 221. doi: 10.1016/S0009-2614(99)00852-0

    6. [6]

      (6) Zhong, R. L.; Xu, H. L.; Su, Z. M.; Li, Z. R.; Sun, S. L.; Qiu, Y.Q. ChemPhysChem 2012, 13, 2349. doi: 10.1002/cphc.v13.9

    7. [7]

      (7) Ohta, S.; Nakano, M.; Kubo, T. J. Phys. Chem. A 2007, 111,3633. doi: 10.1021/jp0713662

    8. [8]

      (8) Ratera, I.; Veciana, J. Chem. Soc. Rev. 2012, 41, 303. doi: 10.1039/c1cs15165g

    9. [9]

      (9) Coe, B. J.; Fielden, J.; Foxon, S. P.; Harris, J. A.; Helliwell, M.;Brunschwig, B. S.; Asselberghs, I.; Clays, K.; Garin, J.; Orduna,J. J. Am. Chem. Soc. 2010, 132, 10498. doi: 10.1021/ja103289a

    10. [10]

      (10) Leïla, B. L.; Coe, B. J.; Clays, K.; Foerier, S.; Verbiest, T.;Asselberghs, I. J. Am. Chem. Soc. 2008, 130, 3286. doi: 10.1021/ja711170q

    11. [11]

      (11) Nakazaki, J.; Chung, I.; Matsushita, M. M.; Sugawara, T.;Watanabe, R.; Izuoka, A.; Kawada, Y. J. Mater. Chem. 2003, 13,1011. doi: 10.1039/b211986b

    12. [12]

      (12) Caneschi, A.; Gatteschi, D.; Rey, P.; Sessoli, R. Inorg. Chem.1991, 30, 3936. doi: 10.1021/ic00020a029

    13. [13]

      (13) Angeloni, L.; Caneschi, A.; David, L.; Fabretti, A.; Ferraro, F.;Gatteschi, D.; Lirzin, A. L.; Sessoli, R. J. Mater. Chem. 1994, 4,1047. doi: 10.1039/jm9940401047

    14. [14]

      (14) Coe, B. J.; Harris, J. A.; Jones, L. A. J. Am. Chem. Soc. 2005,127, 4845. doi: 10.1021/ja0424124

    15. [15]

      (15) Muhammad, S.; Xu, H. L.; Liao, Y.; Kan, Y. H.; Su, Z. M.J. Am. Chem. Soc. 2009, 131, 11833. doi: 10.1021/ja9032023

    16. [16]

      (16) Nakatani, K.; Delaire, J. A. Chem. Mater. 1997, 9, 2682. doi: 10.1021/cm970369w

    17. [17]

      (17) Ma, N. N.; Yan, L. K.; Guan,W.; Qiu, Y. Q.; Su, Z. M. Phys. Chem. Chem. Phys. 2012, 14, 5605. doi: 10.1039/c2cp00054g

    18. [18]

      (18) Liu, C. G.; Su, Z. M.; Guan, X. H.; Muhammad, S. J. Phys. Chem. C 2011, 115, 23946. doi: 10.1021/jp2049958

    19. [19]

      (19) Brook, D. J. R.; Yee, G. T. J. Org. Chem. 2006, 71, 4889. doi: 10.1021/jo060165b

    20. [20]

      (20) Herebian, D.;Wieghardt, K. E.; Neese, F. J. Am. Chem. Soc.2003, 125, 10997. doi: 10.1021/ja030124m

    21. [21]

      (21) Muhammad, S.; Xu, H. L.; Janjua, M. R. S. A.; Su, Z. M.;Nadeem, M. Phys. Chem. Chem. Phys. 2010, 12, 4791. doi: 10.1039/b924241d

    22. [22]

      (22) Wang, C. H.; Ma, N. N.; Sun, X. X.; Sun, S. L.; Qiu, Y. Q.; Liu,P. J. J. Phys. Chem. A 2012, 116, 10496. doi: 10.1021/jp3062288

    23. [23]

      (23) Lamère, J. F.; Sasaki, I.; Lacroix, P. G. New J. Chem. 2006, 30,921. doi: 10.1039/b601315e

    24. [24]

      (24) Sun, X. X.; Ma, N. N.; Li, X. J.; Sun, S. L.; Xie, H. M.; Qiu, Y.Q. J. Organomet. Chem. 2012, 38, 3384.

    25. [25]

      (25) Tsien, R. Y. Annu. Rev. Biochem. 1998, 67, 509. doi: 10.1146/annurev.biochem.67.1.509

    26. [26]

      (26) Voliani, V.; Bizzarri, R.; Nifosì, R.; Abbruzzetti, S.; Grandi, E.;Viappiani, C.; Beltram, F. J. Phys. Chem. B 2008, 112,10714. doi: 10.1021/jp802419h

    27. [27]

      (27) Meulenaere, E. D.; Bich, N. N.;Wergifosse, M. D.; Hecke, K.V.; Meervelt, L. V.; Vanderleyden, J.; Champagne, B.; Clays, K.J. Am. Chem. Soc. 2013, 135, 4061. doi: 10.1021/ja400098b

    28. [28]

      (28) Bhattacharya, D.; Panda, A.; Shil, S.; swamia, T.; Misra, A.Phys. Chem. Chem. Phys. 2012, 14, 6905. doi: 10.1039/c2cp00053a

    29. [29]

      (29) Shil, S.; Misra, A. J. Phys. Chem. A 2010, 114, 2022. doi: 10.1021/jp910661g

    30. [30]

      (30) Limacher, P. A.; Mikkelsen, K. V.; Luthi, H. P. J. Chem. Phys.2009, 130, 1941141.

    31. [31]

      (31) Wang, F. F.; Li, Z. R.;Wu, D.;Wang, B. Q.; Li, Y.; Li, Z. J.;Chen,W.; Yu, G. T.; Gu, F. L.; Aoki, Y. J. Phys. Chem. B 2008,112, 1090.

    32. [32]

      (32) Sim, F.; Chin, S.; Dupuis, M.; Rice, J. E. J. Phys. Chem. 1993,97, 1158. doi: 10.1021/j100108a010

    33. [33]

      (33) Chopra, P.; Carlacci, L.; King, H. F.; Prasad, P. N. J. Phys. Chem. 1989, 93, 3304. doi: 10.1021/j100345a082

    34. [34]

      (34) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09 W, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.


  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    4. [4]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    7. [7]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    9. [9]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    13. [13]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    18. [18]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    19. [19]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    20. [20]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

Metrics
  • PDF Downloads(529)
  • Abstract views(593)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return