Citation: YU Hai-Ling, ZHANG Meng-Ying, HONG Bo, CHENG Zhi Qiang, WANG Jiao, TIAN Dong-Mei, QIU Yong-Qing. Nonlinear Optical Properties of Green Fluorescent Protein Chromophore Coupled Diradicals[J]. Acta Physico-Chimica Sinica, ;2013, 29(12): 2543-2550. doi: 10.3866/PKU.WHXB201310232
-
The geometries, polarizabilities (αs), and first hyperpolarizabilities (βtot) of a series of green fluorescent protein chromophore coupled diradicals and their corresponding optical isomers were investigated using density functional theory (DFT). The results show that the introductions of the electron donor/acceptor significantly enhance the polarizabilities and have a different influence on the first hyperpolarizabilities. For trans isomers, the βtot values of the studied compounds increase with increasing strength of the electron-withdrawing ability of the substituent, whereas the βtot values decrease significantly with increasing strength of the electron-donating ability of the substituent. For cis isomers, the trends in the changes in the βtot values are the opposite of those for trans isomers on introduction of a donor/acceptor. Significantly, photoisomerization can lead to the different βtot values. The βtot values of cis isomers are smaller than those of trans isomers when electron acceptors are introduced. For example, the βtot value of the cis isomer with the strongest electron acceptor, i.e., ―NO2, is about 1/6 that of the corresponding trans isomer. However, the βtot values of trans isomers are smaller than those of cis isomers when electron donors are introduced. For example, the βtot value of the trans isomer with the strongest electron donor, i.e., ―NH2, is about six times smaller than that of the corresponding cis isomer. As a result, photoisomerization can modulate the molecular nonlinear optical (NLO) responses effectively.
-
-
[1]
(1) Nakano, M.; Yamaguchi, K. J. Chem. Phys. Lett. 1993, 206,285. doi: 10.1016/0009-2614(93)85553-Z
-
[2]
(2) Ma, N. N.; Sun, S. L.; Liu, C. G.; Sun, X. X.; Qiu, Y. Q. J. Phys. Chem. A 2011, 115, 13564. doi: 10.1021/jp206003n
-
[3]
(3) Sun, X. X.; Liu, Y.; Zhao, H. B.; Sun, S. L.; Liu, C. G.; Qiu, Y.Q. Acta Phys. -Chim. Sin. 2011, 27, 315. [孙秀欣, 刘艳, 赵海波, 孙世玲, 刘春光, 仇永清. 物理化学学报, 2011, 27, 315.]doi: 10.3866/PKU.WHXB20110236
-
[4]
(4) Liu, C. G.; Guan, X. H.; Su, Z. M. J. Phys. Chem. C 2011, 115,6024. doi: 10.1021/jp111797n
-
[5]
(5) Nakano, M.; Nagao, H.; Yamaguchi, K. Chem. Phys. Lett. 1999,311, 221. doi: 10.1016/S0009-2614(99)00852-0
-
[6]
(6) Zhong, R. L.; Xu, H. L.; Su, Z. M.; Li, Z. R.; Sun, S. L.; Qiu, Y.Q. ChemPhysChem 2012, 13, 2349. doi: 10.1002/cphc.v13.9
-
[7]
(7) Ohta, S.; Nakano, M.; Kubo, T. J. Phys. Chem. A 2007, 111,3633. doi: 10.1021/jp0713662
-
[8]
(8) Ratera, I.; Veciana, J. Chem. Soc. Rev. 2012, 41, 303. doi: 10.1039/c1cs15165g
-
[9]
(9) Coe, B. J.; Fielden, J.; Foxon, S. P.; Harris, J. A.; Helliwell, M.;Brunschwig, B. S.; Asselberghs, I.; Clays, K.; Garin, J.; Orduna,J. J. Am. Chem. Soc. 2010, 132, 10498. doi: 10.1021/ja103289a
-
[10]
(10) Leïla, B. L.; Coe, B. J.; Clays, K.; Foerier, S.; Verbiest, T.;Asselberghs, I. J. Am. Chem. Soc. 2008, 130, 3286. doi: 10.1021/ja711170q
-
[11]
(11) Nakazaki, J.; Chung, I.; Matsushita, M. M.; Sugawara, T.;Watanabe, R.; Izuoka, A.; Kawada, Y. J. Mater. Chem. 2003, 13,1011. doi: 10.1039/b211986b
-
[12]
(12) Caneschi, A.; Gatteschi, D.; Rey, P.; Sessoli, R. Inorg. Chem.1991, 30, 3936. doi: 10.1021/ic00020a029
-
[13]
(13) Angeloni, L.; Caneschi, A.; David, L.; Fabretti, A.; Ferraro, F.;Gatteschi, D.; Lirzin, A. L.; Sessoli, R. J. Mater. Chem. 1994, 4,1047. doi: 10.1039/jm9940401047
-
[14]
(14) Coe, B. J.; Harris, J. A.; Jones, L. A. J. Am. Chem. Soc. 2005,127, 4845. doi: 10.1021/ja0424124
-
[15]
(15) Muhammad, S.; Xu, H. L.; Liao, Y.; Kan, Y. H.; Su, Z. M.J. Am. Chem. Soc. 2009, 131, 11833. doi: 10.1021/ja9032023
-
[16]
(16) Nakatani, K.; Delaire, J. A. Chem. Mater. 1997, 9, 2682. doi: 10.1021/cm970369w
-
[17]
(17) Ma, N. N.; Yan, L. K.; Guan,W.; Qiu, Y. Q.; Su, Z. M. Phys. Chem. Chem. Phys. 2012, 14, 5605. doi: 10.1039/c2cp00054g
-
[18]
(18) Liu, C. G.; Su, Z. M.; Guan, X. H.; Muhammad, S. J. Phys. Chem. C 2011, 115, 23946. doi: 10.1021/jp2049958
-
[19]
(19) Brook, D. J. R.; Yee, G. T. J. Org. Chem. 2006, 71, 4889. doi: 10.1021/jo060165b
-
[20]
(20) Herebian, D.;Wieghardt, K. E.; Neese, F. J. Am. Chem. Soc.2003, 125, 10997. doi: 10.1021/ja030124m
-
[21]
(21) Muhammad, S.; Xu, H. L.; Janjua, M. R. S. A.; Su, Z. M.;Nadeem, M. Phys. Chem. Chem. Phys. 2010, 12, 4791. doi: 10.1039/b924241d
-
[22]
(22) Wang, C. H.; Ma, N. N.; Sun, X. X.; Sun, S. L.; Qiu, Y. Q.; Liu,P. J. J. Phys. Chem. A 2012, 116, 10496. doi: 10.1021/jp3062288
-
[23]
(23) Lamère, J. F.; Sasaki, I.; Lacroix, P. G. New J. Chem. 2006, 30,921. doi: 10.1039/b601315e
-
[24]
(24) Sun, X. X.; Ma, N. N.; Li, X. J.; Sun, S. L.; Xie, H. M.; Qiu, Y.Q. J. Organomet. Chem. 2012, 38, 3384.
-
[25]
(25) Tsien, R. Y. Annu. Rev. Biochem. 1998, 67, 509. doi: 10.1146/annurev.biochem.67.1.509
-
[26]
(26) Voliani, V.; Bizzarri, R.; Nifosì, R.; Abbruzzetti, S.; Grandi, E.;Viappiani, C.; Beltram, F. J. Phys. Chem. B 2008, 112,10714. doi: 10.1021/jp802419h
-
[27]
(27) Meulenaere, E. D.; Bich, N. N.;Wergifosse, M. D.; Hecke, K.V.; Meervelt, L. V.; Vanderleyden, J.; Champagne, B.; Clays, K.J. Am. Chem. Soc. 2013, 135, 4061. doi: 10.1021/ja400098b
-
[28]
(28) Bhattacharya, D.; Panda, A.; Shil, S.; swamia, T.; Misra, A.Phys. Chem. Chem. Phys. 2012, 14, 6905. doi: 10.1039/c2cp00053a
-
[29]
(29) Shil, S.; Misra, A. J. Phys. Chem. A 2010, 114, 2022. doi: 10.1021/jp910661g
-
[30]
(30) Limacher, P. A.; Mikkelsen, K. V.; Luthi, H. P. J. Chem. Phys.2009, 130, 1941141.
-
[31]
(31) Wang, F. F.; Li, Z. R.;Wu, D.;Wang, B. Q.; Li, Y.; Li, Z. J.;Chen,W.; Yu, G. T.; Gu, F. L.; Aoki, Y. J. Phys. Chem. B 2008,112, 1090.
-
[32]
(32) Sim, F.; Chin, S.; Dupuis, M.; Rice, J. E. J. Phys. Chem. 1993,97, 1158. doi: 10.1021/j100108a010
-
[33]
(33) Chopra, P.; Carlacci, L.; King, H. F.; Prasad, P. N. J. Phys. Chem. 1989, 93, 3304. doi: 10.1021/j100345a082
-
[34]
(34) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09 W, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.
-
[1]
-
-
[1]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[2]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[3]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[4]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[5]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[6]
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
-
[7]
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
-
[8]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[9]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[10]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[11]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[12]
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
-
[13]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[14]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[15]
Cheng Zheng , Shiying Zheng , Yanping Zhang , Shoutian Zheng , Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131
-
[16]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[17]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[18]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[19]
Yuyang Xu , Ruying Yang , Yanzhe Zhang , Yandong Liu , Keyi Li , Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064
-
[20]
Hua Hou , Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045
-
[1]
Metrics
- PDF Downloads(529)
- Abstract views(594)
- HTML views(7)